iOS Block的本质(一)
iOS Block的本质(一)
1.对block有一个基本的认识
- block本质上也是一个oc对象,他内部也有一个isa指针。block是封装了函数调用以及函数调用环境的OC对象。
2.探寻block的本质
- 首先写一个简单的block
int main(int argc, const char * argv[]) {
@autoreleasepool {
int age = 10;
void (^block)(int, int) = ^(int a , int b){
NSLog(@"this is a block! -- %d", age);
NSLog(@"this is a block!");
NSLog(@"this is a block!");
NSLog(@"this is a block!");
};
block(10, 10);
}
return 0;
}
3.查看其内部结构
使用命令行将代码转化为c++与OC代码进行比较
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m命令代码// 编译后代码
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; int age = 10;
void (*block)(int, int) = ((void (*)(int, int))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, age)); ((void (*)(__block_impl *, int, int))((__block_impl *)block)->FuncPtr)((__block_impl *)block, 10, 10);
}
return 0;
}
从以上c++代码中block的声明和定义分别与oc代码中相对应显示。将c++中block的声明和调用分别取出来查看其内部实现。
定义block变量代码// 定义block变量代码
void(*block)(int ,int) = ((void (*)(int, int))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, age));
// 可以简化为下列
// void (*block)(int, int) = &__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA, age);
上述定义代码中,可以发现,block定义中调用了__main_block_impl_0函数,并且将__main_block_impl_0函数的地址赋值给了block。那么我们来看一下__main_block_impl_0函数内部结构。
__main_block_imp_0结构体
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int age;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int flags=0) : age(_age) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
__main_block_imp_0结构体内有一个同名构造函数__main_block_imp_0,构造函数中对一些变量进行了赋值最终会返回一个结构体。
- 那么也就是说最终将一个__main_block_imp_0结构体的地址赋值给了block变量
- __main_block_impl_0结构体内可以发现__main_block_impl_0构造函数中传入了四个参数。(void *)__main_block_func_0、&__main_block_desc_0_DATA、age、flags。其中flage有默认值,也就说flage参数在调用的时候可以省略不传。而最后的 age(_age)则表示传入的_age参数会自动赋值给age成员,相当于age = _age。
- 接下来着重看一下前面三个参数分别代表什么。
(void *)__main_block_func_0参数```C++
static void __main_block_func_0(struct __main_block_impl_0 *__cself, int a, int b) {
int age = __cself->age; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_2r__m13fp2x2n9dvlr8d68yry500000gn_T_main_3f4c4a_mi_0, age);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_2r__m13fp2x2n9dvlr8d68yry500000gn_T_main_3f4c4a_mi_1);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_2r__m13fp2x2n9dvlr8d68yry500000gn_T_main_3f4c4a_mi_2);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_2r__m13fp2x2n9dvlr8d68yry500000gn_T_main_3f4c4a_mi_3);
}
```
- 在__main_block_func_0函数中首先取出block中age的值,紧接着可以看到四个熟悉的NSLog,可以发现这段代码恰恰是我们在block块中写下的代码。
- 那么__main_block_func_0函数中其实存储着我们block中写下的代码。而__main_block_impl_0函数中传入的是(void *)__main_block_func_0,也就说将我们写在block块中的代码封装成__main_block_func_0函数,并将__main_block_func_0函数的地址传入了__main_block_impl_0的构造函数中保存在结构体内。
&__main_block_desc_0_DATA参数static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
``` - 我们可以看到\_\_main\_block\_desc\_0中存储着两个参数,reserved和Block\_size,并且reserved赋值为0而Block\_size则存储着\_\_main\_block\_impl\_0的占用空间大小。最终将\_\_main\_block\_desc\_0结构体的地址传入\_\_main\_block\_func\_0中赋值给Desc。
age参数- age也就是我们定义的局部变量。因为在block块中使用到age局部变量,所以在block声明的时候这里才会将age作为参数传入,也就说block会捕获age,如果没有在block中使用age,这里将只会传入(void *)__main_block_func_0,&__main_block_desc_0_DATA两个参数。
这里可以根据源码思考一下为什么当我们在定义block之后修改局部变量age的值,在block调用的时候无法生效。 - 因为block在定义的之后已经将age的值传入存储在__main_block_imp_0结构体中并在调用的时候将age从block中取出来使用,因此在block定义之后对局部变量进行改变是无法被block捕获的。
- age也就是我们定义的局部变量。因为在block块中使用到age局部变量,所以在block声明的时候这里才会将age作为参数传入,也就说block会捕获age,如果没有在block中使用age,这里将只会传入(void *)__main_block_func_0,&__main_block_desc_0_DATA两个参数。
此时回过头来查看__main_block_impl_0结构体
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int age;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int flags=0) : age(_age) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;// block 内部代码块地址
Desc = desc;// 存储block 对象占用的内存大小
}
};
首先我们看一下__block_impl第一个变量就是__block_impl结构体。
// __block_impl结构体内部
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
我们可以发现__block_impl结构体内部就有一个isa指针。因此可以证明block本质上就是一个oc对象。而在构造函数中将函数中传入的值分别存储在__main_block_impl_0结构体实例中,最终将结构体的地址赋值给block。
接着通过上面对__main_block_impl_0结构体构造函数三个参数的分析我们可以得出结论:
- __block_impl结构体中isa指针存储着&_NSConcreteStackBlock地址,可以暂时理解为其类对象地址,block就是_NSConcreteStackBlock类型的。
- block代码块中的代码被封装成__main_block_func_0函数,FuncPtr则存储着__main_block_func_0函数的地址。
- Desc指向__main_block_desc_0结构体对象,其中存储__main_block_impl_0结构体所占用的内存。
调用block执行内部代码
((void (*)(__block_impl *, int, int))((__block_impl *)block)->FuncPtr)((__block_impl *)block, 10, 10);
通过上述代码可以发现调用block是通过block找到FunPtr直接调用,通过上面分析我们知道block指向的是__main_block_impl_0类型结构体,但是我们发现__main_block_impl_0结构体中并不直接就可以找到FunPtr,而FunPtr是存储在__block_impl中的,为什么block可以直接调用__block_impl中的FunPtr呢?
重新查看上述源代码可以发现,(__block_impl *)block将block强制转化为__block_impl类型的,因为__block_impl是__main_block_impl_0结构体的第一个成员,相当于将__block_impl结构体的成员直接拿出来放在__main_block_impl_0中,那么也就说明__block_impl的内存地址就是__main_block_impl_0结构体的内存地址开头。所以可以转化成功。并找到FunPtr成员。
上面我们知道,FunPtr中存储着通过代码块封装的函数地址,那么调用此函数,也就是会执行代码块中的代码。并且回头查看__main_block_func_0函数,可以发现第一个参数就是__main_block_impl_0类型的指针。也就是说将block传入__main_block_func_0函数中,便于重中取出block捕获的值。
3.验证block的本质
- 验证block的本质是__main_block_impl_0结构体类型。
通过代码证明一下上述内容:
#import <Foundation/Foundation.h> struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
}; struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
}; struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int age;
}; int main(int argc, const char * argv[]) {
@autoreleasepool {
int age = 10;
void (^block)(int, int) = ^(int a , int b){
NSLog(@"this is a block! -- %d", age);
NSLog(@"this is a block!");
NSLog(@"this is a block!");
NSLog(@"this is a block!");
};
// 将底层的结构体强制转化为我们自己写的结构体,通过我们自定义的结构体探寻block底层结构体
struct __main_block_impl_0 *blockStruct = (__bridge struct __main_block_impl_0 *)block;
block(10, 10);
}
return 0;
}
通过打断点可以看出我们自定义的结构体可以被赋值成功,以及里面的值。

接下来断点来到block代码块中,看一下堆栈信息中的函数调用地址。Debuf workflow -> always show Disassembly

通过上图可以看到地址确实和FuncPtr中的代码块地址一样。
总结
- block的原理是怎样的?本质是什么?
- block本质上也是一个OC对象,它内部也有个isa指针
- block是封装了函数调用以及函数调用环境的OC对象
- block的底层结构如下图所示

iOS Block的本质(一)的更多相关文章
- iOS Block的本质(四)
iOS Block的本质(四) 上一篇文章iOS Block的本质(三)中已经介绍过block变量的捕获,本文继续探寻block的本质. 1. block内修改变量的值 int main(int ar ...
- # iOS Block的本质(三)
iOS Block的本质(三) 上一篇文章iOS Block的本质(二)中已经介绍过block变量的捕获,本文继续探寻block的本质. 1. block对对象变量的捕获,ARC 环境 block一般 ...
- iOS Block的本质(二)
iOS Block的本质(二) 1. 介绍引入block本质 通过上一篇文章Block的本质(一)已经基本对block的底层结构有了基本的认识,block的底层就是__main_block_impl_ ...
- IOS Block的本质
#import "HMViewController.h" #import "HMPerson.h" @interface HMViewController () ...
- iOS底层原理总结 - 探寻block的本质(一)
面试题 block的原理是怎样的?本质是什么? __block的作用是什么?有什么使用注意点? block的属性修饰词为什么是copy?使用block有哪些使用注意? block在修改NSMu ...
- iOS Block界面反向传值
在上篇博客 <iOS Block简介> 中,侧重解析了 iOS Block的概念等,本文将侧重于它们在开发中的应用. Block是iOS4.0+ 和Mac OS X 10.6+ 引进的对C ...
- iOS block从零开始
iOS block从零开始 在iOS4.0之后,block横空出世,它本身封装了一段代码并将这段代码当做变量,通过block()的方式进行回调. block的结构 先来一段简单的代码看看: void ...
- iOS block 机制
本文要将block的以下机制,并配合具体代码详细描述: block 与 外部变量 block 的存储域:栈块.堆块.全局块 定义 块与函数类似,只不过是直接定义在另一个函数里,和定义它的那个函数共享同 ...
- ios Block详细用法
ios Block详细用法 ios4.0系统已开始支持block,在编程过程中,blocks被Obj-C看成是对象,它封装了一段代码,这段代码可以在任何时候执行.Blocks可以作为函数参数或者函数的 ...
随机推荐
- C/C++获取Windows系统CPU和内存及硬盘使用情况
//1.获取Windows系统内存使用率 //windows 内存 使用率 DWORD getWin_MemUsage(){ MEMORYSTATUS ms; ::GlobalMemoryStatus ...
- PHP开发api接口 -- 安全验证 生成签名
转载博客 ————. http://blog.csdn.net/li741350149/article/details/62887524 REST模式中HTTP请求方法(GET,POST,PUT,DE ...
- Flutter实战视频-移动电商-15.首页_商品推荐模块编写
15.首页_商品推荐模块编写 商品推荐,我们做成可以横向滚动的 分析: 上面是标题,下面是ListView,里面是一个Column, column分三层,第一是图片,第二是价格,第三是市场价格 小细节 ...
- python 三元表达式 列表推导式,生成器表达式。递归,匿名函数, 内置函数
三元表达式 三元表达式仅应用于: 1.条件成立返回一个值 2.条件不成立返回一个值 res = x if x>y else y print(res) name= input("姓名&g ...
- UVa 10755 Garbage Heap (暴力+前缀和)
题意:有个长方体由A*B*C组成,每个废料都有一个价值,要选一个子长方体,使得价值最大. 析:我们暴力枚举上下左右边界,然后用前缀和来快速得到另一个,然后就能得到长方体,每次维护一个最小值,然后差就是 ...
- Android 跨应用调用Activity
http://blog.csdn.net/ouyangliping/article/details/7972141 如何调用另外一个app应用的activity或者service,本文提供一个验证可行 ...
- windows7任务管理器内存相关列详细解释
内存 - 工作集:私人工作集中的内存数量与进程正在使用且可以由其他进程共享的内存数量的总和. 内存 - 峰值工作集:进程所使用的工作集内存的最大数量. 内存 - 工作集增量:进程所使用的工作集内存 ...
- 3DMAX 1快捷键及常用操作
开启,关闭快捷键 ,使用快捷键时要按下这个按钮 快捷键查看与修改 自定义-自定义用户界面(cutomize user interface):设置和查看快捷键 位置变换 Z: 复位---物体被移动飞了的 ...
- Python 3.x 的一些注意事项
1. reload 被更改 需要 在console执行 from imp import reload 才能调用CT 同时,如果py文件是位于主文件夹深部的位置,可以这么做: import ComicT ...
- 阿里云物联网 .NET Core 客户端 | CZGL.AliIoTClient:3. 订阅Topic与响应Topic
文档目录: 说明 1. 连接阿里云物联网 2. IoT 客户端 3. 订阅Topic与响应Topic 4. 设备上报属性 4.1 上报位置信息 5. 设置设备属性 6. 设备事件上报 7. 服务调用 ...