1、线性回归
线性回归就是使用下面的预测函数预测未来观测量:

其中,x1,x2,...,xk都是预测变量(影响预测的因素),y是需要预测的目标变量(被预测变量)。

线性回归模型的数据来源于澳大利亚的CPI数据,选取的是2008年到2011年的季度数据。

rep函数里面的第一个参数是向量的起始时间,从2008-2010,第二个参数表示向量里面的每个元素都被4个小时间段。

year <- rep(2008:2010, each=4)
quarter <- rep(1:4, 3)
cpi <- c(162.2, 164.6, 166.5, 166.0,

  • 166.2, 167.0, 168.6, 169.5,
  • 171.0, 172.1, 173.3, 174.0)

    plot函数中axat=“n”表示横坐标刻度的标注是没有的

    plot(cpi, xaxt="n", ylab="CPI", xlab="")

    绘制横坐标轴

    axis(1, labels=paste(year,quarter,sep="Q"), at=1:12, las=3)
    接下来,观察CPI与其他变量例如‘year(年份)’和‘quarter(季度)’之间的相关关系。

cor(year,cpi)
cor(quarter,cpi)
输出如下:

cor(quarter,cpi)
[1] 0.3738028
cor(year,cpi)
[1] 0.9096316
cor(quarter,cpi)
[1] 0.3738028
由上图可知,CPI与年度之间的关系是正相关,并且非常紧密,相关系数接近1;而它与季度之间的相关系数大约为0.37,只是有着微弱的正相关,关系并不明显。

然后使用lm()函数建立一个线性回归模型,其中年份和季度为预测因素,CPI为预测目标。

建立模型fit

fit <- lm(cpi ~ year + quarter)
fit
输出结果如下:

Call:
lm(formula = cpi ~ year + quarter)

Coefficients:
(Intercept) year quarter
-7644.488 3.888 1.167

由上面的输出结果可以建立以下模型公式计算CPI:

其中,c0、c1和c2都是模型fit的参数分别是-7644.488、3.888和1.167。因此2011年的CPI可以通过以下方式计算:

(cpi2011 <-fit$coefficients[[1]] + fit$coefficients[[2]]*2011 +

  • fit$coefficients[[3]]*(1:4))
    输出的2011年的季度CPI数据分别是174.4417、175.6083、176.7750和177.9417。

模型的具体参数可以通过以下代码查看:

查看模型的属性

attributes(fit)
$names
[1] "coefficients" "residuals" "effects" "rank" "fitted.values"
[6] "assign" "qr" "df.residual" "xlevels" "call"
[11] "terms" "model"
$class
[1] "lm"

模型的参数

fit$coefficients

观测值与拟合的线性模型之间的误差,也称为残差

residuals(fit)
1 2 3 4 5 6 7
-0.57916667 0.65416667 1.38750000 -0.27916667 -0.46666667 -0.83333333 -0.40000000
8 9 10 11 12
-0.66666667 0.44583333 0.37916667 0.41250000 -0.05416667
除了将数据代入建立的预测模型公式中,还可以通过使用predict()预测未来的值。

输入预测时间

data2011 <- data.frame(year=2011, quarter=1:4)
cpi2011 <- predict(fit, newdata=data2011)

设置散点图上的观测值和预测值对应点的风格(颜色和形状)

style <- c(rep(1,12), rep(2,4))
plot(c(cpi, cpi2011), xaxt="n", ylab="CPI", xlab="", pch=style, col=style)

标签中sep参数设置年份与季度之间的间隔

axis(1, at=1:16, las=3,

  • labels=c(paste(year,quarter,sep="Q"), "2011Q1", "2011Q2", "2011Q3", "2011Q4"))
    预测结果如下:

上图中红色的三角形就是预测值。

2、Logistic回归

Logistic回归是通过将数据拟合到一条线上并根据简历的曲线模型预测事件发生的概率。可以通过以下等式来建立一个Logistic回归模型:

其中,x1,x2,...,xk是预测因素,y是预测目标。令

,上面的等式被转换成:

使用函数glm()并设置响应变量(被解释变量)服从二项分布(family='binomial,'link='logit')建立Logistic回归模型,更多关于Logistic回归模型的内容可以通过以下链接查阅:

· R Data Analysis Examples - Logit Regression
· 《LogisticRegression (with R)》
3、广义线性模型

广义线性模型(generalizedlinear model, GLM)是简单最小二乘回归(OLS)的扩展,响应变量(即模型的因变量)可以是正整数或分类数据,其分布为某指数分布族。其次响应变量期望值的函数(连接函数)与预测变量之间的关系为线性关系。因此在进行GLM建模时,需要指定分布类型和连接函数。这个建立模型的分布参数包括binomaial(两项分布)、gaussian(正态分布)、gamma(伽马分布)、poisson(泊松分布)等。

广义线性模型可以通过glm()函数建立,使用的数据是包‘TH.data’自带的bodyfat数据集。

data("bodyfat", package="TH.data")
myFormula <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth

设置响应变量服从正态分布,对应的连接函数服从对数分布

bodyfat.glm <- glm(myFormula, family = gaussian("log"), data = bodyfat)

预测类型为响应变量

pred <- predict(bodyfat.glm, type="response")
plot(bodyfat$DEXfat, pred, xlab="Observed Values", ylab="Predicted Values")
abline(a=0, b=1)
预测结果检验如下图所示:

由上图可知,模型虽然也有离群点,但是大部分的数据都是落在直线上或者附近的,也就说明模型建立的比较好,能较好的拟合数据。

4、非线性回归

如果说线性模型是拟合拟合一条最靠近数据点的直线,那么非线性模型就是通过数据拟合一条曲线。在R中可以使用函数nls()建立一个非线性回归模型,具体的使用方法可以通过输入'?nls()'查看该函数的文档。

【R语言进行数据挖掘】回归分析的更多相关文章

  1. R语言 多元线性回归分析

    #线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公 ...

  2. 【R语言进行数据挖掘】决策树和随机森林

    1.使用包party建立决策树 这一节学习使用包party里面的函数ctree()为数据集iris建立一个决策树.属性Sepal.Length(萼片长度).Sepal.Width(萼片宽度).Peta ...

  3. 大数据时代的精准数据挖掘——使用R语言

    老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一 ...

  4. 【R笔记】R语言函数总结

    R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字 ...

  5. R语言笔记完整版

    [R笔记]R语言函数总结   R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头, ...

  6. 【转】R语言函数总结

    原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头, ...

  7. [译]用R语言做挖掘数据《一》

    介绍 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. ...

  8. R语言rvest包网络爬虫

    R语言网络爬虫初学者指南(使用rvest包) 钱亦欣 发表于 今年 06-04 14:50   5228 阅读   作者 SAURAV KAUSHIK 译者 钱亦欣 引言 网上的数据和信息无穷无尽,如 ...

  9. R语言 逐步回归分析

    逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的. R语言中用于逐步回归分析的函数 step()    drop1()     add1() #1.载 ...

随机推荐

  1. 机器学习之PCA主成分分析

    前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很 ...

  2. 堆栈(栈stack)的实现和基本用法(二)

    个人网站http://www.ravedonut.com/ 栈的应用: #include <iostream> #include <stack> using namespace ...

  3. HDFS源码分析一-概述

    HDFS 主要包含 NameNode, SecondaryNameNode, DataNode 以及 HDFS Client . 我们从以下这几部分讲: 1. HDFS概述 2. NameNode 实 ...

  4. Eclipse+Maven+TestNg+ReportNg 生成测试报告

    http://blog.csdn.net/a542551042/article/details/46729585

  5. 1118 Birds in Forest (25 分)

    Some scientists took pictures of thousands of birds in a forest. Assume that all the birds appear in ...

  6. 632. Smallest Range(priority_queue)

    You have k lists of sorted integers in ascending order. Find the smallest range that includes at lea ...

  7. lightoj1006【记忆化搜索(我是这么叫)】

    搜索的时候记录一下,注意要long long: #include<cstdio> #include<queue> #include<map> #include< ...

  8. Ogre 学习记录

    http://www.cppblog.com/richardhe/articles/55722.html 1: 设计初衷 它设计初衷是完全跨平台的.抽象的接口隐藏了平台相关的细节. 它设计初衷是大幅度 ...

  9. [Xcode 实际操作]八、网络与多线程-(19)使用RunLoop使PerformSelector方法延迟动作的执行

    目录:[Swift]Xcode实际操作 本文将演示使用RunLoop使PerformSelector方法延迟动作的执行. 在项目导航区,打开视图控制器的代码文件[ViewController.swif ...

  10. 浅谈Nginx服务器的内部核心架构设计

    前言 Nginx 是一个 免费的 , 开源的 , 高性能 的 HTTP 服务器和 反向代理 ,以及 IMAP / POP3代理服务器. Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资源消 ...