Time limit2000 ms

Memory limit65536 kB

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1a2, ..., aN) be any sequence ( ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000 

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence. 

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

题意 求最大上升子序列的长度题解 dp[i]就是以a[i]为末尾的最长上升子序列的长度,我写的是O(n^2)的复杂度,也可以用二分查找去找,那个是O(nlog n)
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<stack>
using namespace std;
#define PI 3.14159265358979323846264338327950
#define INF 0x3f3f3f3f;

int n;
];
];
void solve()
{
    ;
    ;i<n;i++)
    {
        dp[i]=;
        ;j<i;j++)
        {
            if(a[j]<a[i])
            {
                dp[i]=max(dp[i],dp[j]+);
            }

        }
        res=max(res,dp[i]);

    }
    printf("%d\n",res);
}
int main()
{
    cin>>n;
    ;i<n;i++)
        cin>>a[i];
    solve();
}

poj-2533 longest ordered subsequence(动态规划)的更多相关文章

  1. poj 2533 Longest Ordered Subsequence 最长递增子序列

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...

  2. POJ 2533 Longest Ordered Subsequence(裸LIS)

    传送门: http://poj.org/problem?id=2533 Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 6 ...

  3. POJ 2533 Longest Ordered Subsequence(LIS模版题)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 47465   Acc ...

  4. POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]

    题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...

  5. POJ 2533 Longest Ordered Subsequence(最长上升子序列(NlogN)

    传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subseque ...

  6. POJ 2533 Longest Ordered Subsequence 最长递增序列

      Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequenc ...

  7. poj 2533 Longest Ordered Subsequence(LIS)

    Description A numeric sequence of ai is ordered ifa1 <a2 < ... < aN. Let the subsequence of ...

  8. POJ 2533 Longest Ordered Subsequence(DP 最长上升子序列)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 38980   Acc ...

  9. Poj 2533 Longest Ordered Subsequence(LIS)

    一.Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequenc ...

  10. POJ - 2533 Longest Ordered Subsequence与HDU - 1257 最少拦截系统 DP+贪心(最长上升子序列及最少序列个数)(LIS)

    Longest Ordered Subsequence A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let ...

随机推荐

  1. CoreCLR

    CoreCLR 在这篇中我将讲述GC Collector内部的实现, 这是CoreCLR中除了JIT以外最复杂部分,下面一些概念目前尚未有公开的文档和书籍讲到. 为了分析这部分我花了一个多月的时间,期 ...

  2. 078 Subsets 子集

    给定一组不同的整数 nums,返回所有可能的子集(幂集).注意事项:该解决方案集不能包含重复的子集.例如,如果 nums = [1,2,3],结果为以下答案:[  [3],  [1],  [2],  ...

  3. E. Selling Souvenirs 不会做

    http://codeforces.com/contest/808/problem/E 不理解为什么dp = {cost, cnt1, cnt2}可以 而dp = {cost, cnt1, cnt2, ...

  4. jQuery知识点小结

    博主之前学习一段时间后做了点Demo,借此机会发出来分享,其实学jQuery只要简单看看文档即可,但有些细枝末节的东西文档会默认使用者是了解的,所以还是得系统学习系统训练:Talk is cheap, ...

  5. 关于ev||event事件对象的兼容写法

    因为FireFox Chrome默认都是有一个值传进来的,所以这里是对IE和FireFox Chrome做了兼容. 例如:页面点击事件事件要使用document,获取鼠标位置 document.onc ...

  6. mui实现图片更换(暂未上传)

    页面中有默认的图片,触发type为file的input时,更换图片,这个是mui移动端的项目,算了,不多说,开码 首先,先在html页面中设置样式,样式我就不给了,贴个布局 <div class ...

  7. 关于死循环while(true){}或for(;;){}的总结

    关于死循环while(true){}或for(;;){}的总结 1.基本用法: while(true){     语句体; } for(;;){     语句体; } 以上情况,语句体会一直执行. 2 ...

  8. iOS - KVO 简单应用

    KVO(键值监听)全称 Key Value Observing.使用KVO可以实现视图组件和数据模型的分离,视图作为监听器,当模型的属性值发生变化后,监听器可以做相应的处理.KVO的方法由NSKeyV ...

  9. Lucene-如何编写Lucene程序

    Lucene版本:7.1 使用Lucene的关键点 创建文档(Document),添加文件(Field),保存了原始数据信息: 把文档加入IndexWriter: 使用QueryParser.pars ...

  10. 修改wamp的数据库密码

    方法/步骤     一:修改数据库密码 1.点开MySQL console进入数据库编辑框,然后按回车键,会出现图2的效果. 2.接着输入“use mysql” 下面提示“Database chang ...