LightOJ1341 Aladdin and the Flying Carpet —— 唯一分解定理
题目链接:https://vjudge.net/problem/LightOJ-1341
| Time Limit: 3 second(s) | Memory Limit: 32 MB |
It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery.
Aladdin was about to enter to a magical cave, led by the evil sorcerer who disguised himself as Aladdin's uncle, found a strange magical flying carpet at the entrance. There were some strange creatures guarding the entrance of the cave. Aladdin could run, but he knew that there was a high chance of getting caught. So, he decided to use the magical flying carpet. The carpet was rectangular shaped, but not square shaped. Aladdin took the carpet and with the help of it he passed the entrance.
Now you are given the area of the carpet and the length of the minimum possible side of the carpet, your task is to find how many types of carpets are possible. For example, the area of the carpet 12, and the minimum possible side of the carpet is 2, then there can be two types of carpets and their sides are: {2, 6} and {3, 4}.
Input
Input starts with an integer T (≤ 4000), denoting the number of test cases.
Each case starts with a line containing two integers: a b (1 ≤ b ≤ a ≤ 1012) where a denotes the area of the carpet and b denotes the minimum possible side of the carpet.
Output
For each case, print the case number and the number of possible carpets.
Sample Input |
Output for Sample Input |
|
2 10 2 12 2 |
Case 1: 1 Case 2: 2 |
题意:
求n有多少对因子(即a*b=n,则{a,b}为其中一对,不要求顺序),且因子的最小下限为m?
题解:
1.求因子个数,则对n进行质因子分解。
2.先不考虑因子的最小下限m,则n共有 ∏(num[i]+1)个因子,其中num[i]为第i个质因子的个数。
3.当n是平方数的时候,除了sqrt(n)之外,其他因子是一一对应的,即a*b=n, a!=b; 当n不是平方数时,显然它的因子是一一对应的,即有2*pair个因子,所以有pair对因子, 因此 pair = (∏(num[i]+1))/2,而题目说明了n非平方数。
4.再考虑回下限m:可知当 a*b = n 时, a、b必定满足 a<=sqrt(n)或b<=sqrt(n)。所以当m>sqrt(n)时,就不存在这样的因子对。当m<=sqrt(n)时,可以直接枚举较小的那个因子,枚举范围为:1~min(m, sqrt(n)+1),如果它能整除n,这表明存在一对不满足最小下限的因子对,删除即可。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; LL n, m;
bool notprime[MAXN];
int prime[MAXN+];
void getPrime()
{
memset(notprime, false, sizeof(notprime));
notprime[] = notprime[] = true;
prime[] = ;
for (int i = ; i<=MAXN; i++)
{
if (!notprime[i])prime[++prime[]] = i;
for (int j = ; j<=prime[ ]&& prime[j]<=MAXN/i; j++)
{
notprime[prime[j]*i] = true;
if (i%prime[j] == ) break;
}
}
} int fatCnt;
LL factor[][];
int getFactors()
{
LL tmp = n;
fatCnt = ;
for(int i = ; prime[i]<=tmp/prime[i]; i++)
{
if(tmp%prime[i]==)
{
factor[++fatCnt][] = prime[i];
factor[fatCnt][] = ;
while(tmp%prime[i]==) tmp /= prime[i], factor[fatCnt][]++;
}
}
if(tmp>) factor[++fatCnt][] = tmp, factor[fatCnt][] = ;
} int main()
{
getPrime();
int T, kase = ;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n,&m);
int ans = ;
if(1LL*m*m>n)
ans = ;
else
{
getFactors();
for(int i = ; i<=fatCnt; i++)
ans *= (factor[i][]+);
ans /= ;
for(LL i = ; i<min(m,(LL)sqrt(n)+); i++)
if(n%i==) ans--;
}
printf("Case %d: %lld\n", ++kase, ans);
}
}
LightOJ1341 Aladdin and the Flying Carpet —— 唯一分解定理的更多相关文章
- LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...
- LightOJ - 1341 Aladdin and the Flying Carpet 唯一分解定理LightOJ 1220Mysterious Bacteria
题意: ttt 组数据,第一个给定飞毯的面积为 sss,第二个是毯子的最短的边的长度大于等于这个数,毯子是矩形但不是正方形. 思路: 求出 sss 的所有因子,因为不可能是矩形,所以可以除以 222, ...
- LightOJ-1341 Aladdin and the Flying Carpet 分解质因数(注意对大素数的优化)
题目链接:https://cn.vjudge.net/problem/LightOJ-1341 题意 给出一个长方形的面积a 让你算整数边长的可能取值,并且两个边都大于给定数字b 思路 唯一分解定理: ...
- LightOJ1341 Aladdin and the Flying Carpet
题意 给一对数字 a,b ,a是一个长方形的面积,问有多少种整数的边的组合可以组成面积为a的长方形,要求最短的边不得小于b 数据组数T<=4000, a,b<=10^12 Solution ...
- Aladdin and the Flying Carpet
Aladdin and the Flying Carpet https://cn.vjudge.net/contest/288520#problem/C It's said that Aladdin ...
- C - Aladdin and the Flying Carpet 有多少种长方形满足面积为a(<=10^12),且最短边>=b;长方形边长为整数,且一定不可以是正方形。
/** 题目:C - Aladdin and the Flying Carpet 链接:https://vjudge.net/contest/154246#problem/C 题意:有多少种长方形满足 ...
- Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】
Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...
- 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...
- Aladdin and the Flying Carpet(唯一分解定理)
题目大意:给两个数a,b,求满足c*d==a且c>=b且d>=b的c,d二元组对数,(c,d)和(d,c)属于同一种情况: 题目分析:根据唯一分解定理,先将a唯一分解,则a的所有正约数的个 ...
随机推荐
- IP分段小记
192.168.0.1 个人电脑:0.2-0.50 硬件开发板:0.51-0.100 机器人工控机:0.101-0.200 激光雷达:192.168.254.51~100 编码器板子:192.168. ...
- 【APIO2015】Bali Sculptures
题目描述 印尼巴厘岛的公路上有许多的雕塑,我们来关注它的一条主干道. 在这条主干道上一共有 $N$ 座雕塑,为方便起见,我们把这些雕塑从 $1$ 到 $N$ 连续地进行标号,其中第 $i$ 座雕塑的年 ...
- PHP平均整数红包算法
<?php function RandomMoney( $money,$num ){ $arr = array(); $total_money = 0; $this_money = $money ...
- 关于在iOS设备上探测WIFI,3G,GPRS使用情况的细节
由于设计的游戏需要有一些联网请求,但有时候在设备未连接网络的情况下,如果对网络情况不加以判断,则可能造成游戏为了等游戏超时,浪费不必要的时间. 所以在游戏启动时检测一下网络状况是很必要的,而且当玩家的 ...
- AngularJS:实现动态添加输入控件功能
功能要求如下:1. 点击加号可以增加输入框.2. 点击减号可以减少输入框.3. 当输入框只有一个的时候,不能再减少输入框.效果图如下:只有一个输入框有多个输入框 要实现这个功能,可以 ...
- 赵雅智_android_frame动画
在開始实例解说之前,先引用官方文档中的一段话: Frame动画是一系列图片依照一定的顺序展示的过程,和放电影的机制非常相似.我们称为逐帧动画.Frame动画能够被定义在XML文件里,也能够全然编码实现 ...
- tomcat启动文件
home目录下创建run.bat文件,文件内容如下: @echo off set JAVA_OPTS=-server -Xms1024m -Xmx1024m ^-XX:+UseG1GC ^-XX:Ma ...
- solaris用户与文件权限管理
此文章已于 20:45:28 2015/3/22 重新发布到 zhuxuekui3 solaris用户与文件权限管理1 类别 「网站分类」Oracle 一.用户与用户组管理 三种用户:超级用户. ...
- 【bzoi2006】【狼抓兔子】【最小割】
Description Source: Beijing2006 [BJOI2006] 八中OJ上本题链接:http://www.lydsy.com/JudgeOnline/problem.php?id ...
- codeforces 570 D. Tree Requests 树状数组+dfs搜索序
链接:http://codeforces.com/problemset/problem/570/D D. Tree Requests time limit per test 2 seconds mem ...