流浪者(rover)

题目描述

有一位流浪者正在一个n∗mn∗m的网格图上流浪。初始时流浪者拥有SS点体力值。

流浪者会从(1,1)(1,1)走向(n,m)(n,m),并且他只会向下走((x,y)→(x+1,y))((x,y)→(x+1,y))或是往右走((x,y)→(x,y+1))((x,y)→(x,y+1)),在所有可行的路线中他会随机选择一条。

网络图中还有KK个障碍点。若流浪者当前体力值为SS,则他经过一个障碍点后体力值会变为⌈S2⌉⌈S2⌉。

现在请你求出,流浪者到达(n,mn,m)时他体力值的期望是多少。

若答案为abab,则你输出abab在模109+7109+7意义下的值即可。

输入

第一行四个整数n,m,K,Sn,m,K,S, 意义见题目描述。

接下来K行每行两个整数Xi,YiXi,Yi,表示一个障碍点,保证一个障碍点不会出现多次。起点与终点可能也会是障碍点。

输出

仅一行一个整数表示答案。

样例1解释

共有6种合法路径,这里不一一列出。

16∗(6+6+11+3+6+6)=19316∗(6+6+11+3+6+6)=193

约定

30%的数据:n,m≤10n,m≤10

50%的数据:n,m≤1000n,m≤1000

1000%的数据:1≤n,m≤105,0≤K≤min(n∗m,2000),1≤S≤1061≤n,m≤105,0≤K≤min(n∗m,2000),1≤S≤106


solution

slz:经典模型

我:完全不会

30:dfs

50:dp 令f[i][j][k]表示走到i j,经过k个格子的方案数

由于当k>20时对k不同对答案没有影响,最后一维可以只开20

O(nm20)

100:

dp 令f[i][j]表示当前在第i个特殊点,走到终点还会经过恰好j个特殊点的路径数

g[i][j]表示当前在第i个特殊点,走到终点还会经过小于等于j个特殊点的路径数

ways(i,j)表示i到j的路径数

从后往前dp即可

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define maxn 2005
#define mod 1000000007
#define ll long long
using namespace std;
int n,m,K,S,s[24];
ll h[200008],ny[200008],f[maxn][25],g[maxn][23];
ll work(ll a,int num){
ll ans=1;
while(num){
if(num&1)ans=ans*a;
a=a*a;a%=mod;ans%=mod;num>>=1;
}
return ans;
}
struct node{
int x,y;
}p[maxn];
bool cmp(node a,node b){
return a.x<b.x||a.x==b.x&&a.y<b.y;
}
ll C(int N,int M){
return h[N]*ny[M]%mod*ny[N-M]%mod;
}
int main()
{
cin>>n>>m>>K>>S;
int Max=200005;h[0]=1; for(int i=1;i<=Max;i++)h[i]=h[i-1]*i%mod;
ny[Max]=work(h[Max],mod-2);
for(int i=Max-1;i>=0;i--)ny[i]=ny[i+1]*(i+1)%mod;
s[0]=S;int cnt=0;
for(;s[cnt]>1;cnt++)s[cnt+1]=(s[cnt]+1)/2;
for(int i=1;i<=K;i++){
scanf("%d%d",&p[i].x,&p[i].y);
}
sort(p+1,p+K+1,cmp);
p[0].x=1;p[0].y=1;
for(int i=K;i>=0;i--){
int xi=p[i].x,yi=p[i].y;
for(int j=0;j<cnt;j++){
ll sum=0;g[i][j]=C(n-xi+m-yi,n-xi);
for(int k=K;k>i;k--){
if(p[k].y<p[i].y)continue;
int xk=p[k].x,yk=p[k].y;
sum+=f[k][j]*C(xk-xi+yk-yi,xk-xi)%mod;
sum%=mod;
}
g[i][j]-=sum;g[i][j]%=mod;
}
g[i][cnt]=C(n-xi+m-yi,n-xi);
for(int j=1;j<=cnt;j++)f[i][j]=(g[i][j]-g[i][j-1])%mod;
f[i][0]=g[i][0];
}
ll Answer=0;
for(int i=0;i<=cnt;i++){
Answer+=f[0][i]*s[i]%mod;
Answer%=mod;
}
ll All=C(n+m-2,m-1);
Answer=Answer*work(All,mod-2);
Answer=(Answer%mod+mod)%mod;
printf("%lld\n",Answer);
return 0;
}

流浪者(rover)的更多相关文章

  1. CF1010D Mars rover [位运算,DP]

    题目传送门 Mars Rover 格式难调,题面就不放了. 分析: 今天考试的时候考了这道题目的加强版,所以来做. 其实也并不难,我们建立好树形结构以后先把初始权值全部求出,然后就得到了根节点的初始值 ...

  2. codeforces 722E Research Rover

    codeforces 722E Research Rover 题意 \(1e5*1e5\)的棋盘中有\(2000\)个坏点,初始给定一个值\(s(1<=s<=1e6)\).从棋盘左上角走到 ...

  3. 【Foreign】Research Rover [DP]

    Research Rover Time Limit: 25 Sec  Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample ...

  4. 新疆大学ACM-ICPC程序设计竞赛五月月赛(同步赛)- Red Rover

    链接:https://www.nowcoder.com/acm/contest/116/A来源:牛客网 输入描述: Input consists of a single line containing ...

  5. APM2.8 Rover 自己主动巡航车设计(固件安装和设置)

    1.2 APM2.8软件安装与固件下载 下载Mission Planner这个地面基站软件,这里介绍的是windoews平台下的,在MAC或者linux下能够使用QGroundCont基于QT编写的地 ...

  6. CF1010D Mars rover

    CF1010D Mars rover 洛谷评测传送门 题目描述 Natasha travels around Mars in the Mars rover. But suddenly it broke ...

  7. [Codeforces722E] Research Rover (dp+组合数学)

    [Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...

  8. Steam 游戏 《The Vagrant(流浪者)》修改器制作-[先使用CE写,之后有时间的话改用CheatMaker](2020年寒假小目标08)

    日期:2020.02.07 博客期:146 星期五 [温馨提示]: 只是想要修改器的网友,可以直接点击此链接下载: 只是想拿CT文件的网友,可以直接点击此链接下载: 没有博客园账号的网友,可以将页面下 ...

  9. 4.2 省选模拟赛 流浪者 容斥dp

    求出期望 所有情况很好搞 C(n+m-2,n-1). 也就是说求出所有情况的和乘以上面总方案的逆元即可. 可以发现所有情况和经过多少个障碍点有关 和所处位置无关. 简单的设f[i]表示从1,1到n,m ...

随机推荐

  1. Python实现购物小程序

    一.需求 1.登录 { ‘xxx1’:{'passwd':'123','role':1,'moeny':10000,"carts":['mac']}, 'xxx1':{'passw ...

  2. Linux学习记录(二)

    1.远程连接工具的使用 实际开发中,Linux服务器都在其他的地方,我们要通过远程的方式去连接Linux并操作它,Linux远程的操作工具有很多,企业中常用的有Puttty.secureCRT.SSH ...

  3. Repeater控件里面取不到CheckBox的值

    然后在后台需要取到,选中了那些 然后在后台怎么取也取不到,当时就纳闷了,然后开始怀疑自己的代码是不是错了,经过仔细一看,我的妈呀,加载事件了差一句话......整个人都不好了 加载事件差这句话不行,补 ...

  4. 20180911 关于页面加载顺序引发的JS的undefined/null错误

    引用: 百度知道-HTML+JavaScript执行顺序问题 这是我在学习JS滚动播放图片案例意外遇到的一个问题,代码完成后console弹出错误警告: Uncaught TypeError: Can ...

  5. 随机数生成器java实现

    /** 设计一个随机数生成器,可以产生给定平均概率的随机证书序列. 即输入一个概率比如:0.9 然后输入要求的概率样本个数比如:1000 输出一个接近所输入的0.9的概率数(要求样本数越大越接近输入的 ...

  6. CentOS---JDK安装与配置

    1.先查看一下CentOS中存在的jdk安装包信息 # rpm -qa | grep java 查看CentOS安装的jdk版本 #java -version 2.分别执行以下命令将所有相关包都删除 ...

  7. flask-bootstrap

    pip install bootstarp 使用bower安装bootstrap的命令是: bash$ bower install bootstrap不过问题出在如何安装bower上. 官方网站上这样 ...

  8. http 实战练习

    http 实战练习 建立httpd服务器,要求提供两个基于名称的虚拟主机: (1)www.X.com,页面文件目录为/web/vhosts/x:错误日志为/var/log/httpd/x.err,访问 ...

  9. DevOps - 配置管理 - Puppet

    uppet总结 一.基础知识 1. Puppet是开源的基于Ruby的系统配置管理工具,依赖于C/S的部署架构.Puppet这样的自动化配置管理工具可以帮助系统管理员更加方便的完成多台服务器的升级软件 ...

  10. Ubuntu设置代理上网

    代理服务器(Proxy Server)是个人网络和Internet服务商之间的中间代理机构,它负责转发合法的网络信息,对转发进行控制和登记.代理服务器作为连接Internet(广域网)与Intrane ...