[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=4070

[算法]

考虑将每个"Doge"向其所能到达的楼连边

直接SPFA求单源最短路可以获得57分

那么 , 怎样拿到满分呢?

我们发现这张图的边的数量达到了NM的数量级

考虑分块 , 将每个点拆成SQRT(N)个点

将每个Pi <= SQRT(N)的点向(Bi , Pi)连边 , 这样的边不会超过N * SQRT(N)条

将每个Pi > SQRT(N)的点向其所能到达的所有点连边 , 这样的边不会超过NlogN条

时间复杂度 : O(N ^ 2) , 实际远不能达到这个上限

[代码]

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int inf = 1e9;
const int N = ; struct edge
{
int to , w , nxt;
} e[]; int n , m , block , tot , S , T;
int head[N] , dist[N];
bool inq[N]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline int id(int x , int y)
{
return y * n + x;
}
inline void addedge(int u , int v , int w)
{
++tot;
e[tot] = (edge){v , w , head[u]};
head[u] = tot;
}
inline int SPFA()
{
queue< int > q;
q.push(S);
memset(dist , 0x3f , sizeof(dist));
dist[S] = ;
inq[S] = true;
while (!q.empty())
{
int cur = q.front();
q.pop();
inq[cur] = false;
for (int i = head[cur]; i; i = e[i].nxt)
{
int v = e[i].to , w = e[i].w;
if (dist[cur] + w < dist[v])
{
dist[v] = dist[cur] + w;
if (!inq[v])
{
inq[v] = true;
q.push(v);
}
}
}
}
return dist[T] != 0x3f3f3f3f ? dist[T] : -;
} int main()
{ read(n); read(m);
block = min((int)sqrt(n) , );
for (int i = ; i <= block; ++i)
{
for (int j = i; j < n; ++j)
{
addedge(id(j , i) , id(j - i , i) , );
addedge(id(j - i , i) , id(j , i) , );
}
for (int j = ; j < n; ++j) addedge(id(j , i) , id(j , ) , );
}
for (int k = ; k <= m; ++k)
{
int Bi , Pi;
read(Bi); read(Pi);
if (Pi <= block) addedge(id(Bi , ) , id(Bi , Pi) , );
else
{
for (int i = Bi + Pi; i < n; i += Pi) addedge(id(Bi , ) , id(i , ) , (i - Bi) / Pi);
for (int i = Bi - Pi; i >= ; i -= Pi) addedge(id(Bi , ) , id(i , ) , (Bi - i) / Pi);
}
if (k == ) S = id(Bi , );
if (k == ) T = id(Bi , );
}
printf("%d\n" , SPFA()); return ; }

[APIO 2015] 雅加达的摩天楼的更多相关文章

  1. 解题:APIO 2015 雅加达的摩天大楼

    题面 分块思想+最短路 发现对于步长小的doge会连出很多边,很容易导致大量的重边,于是对doge们根据步长分块讨论:根据步长建出分层图,然后把步长不超过某个值的doge们连到对应层上的点上,其余的d ...

  2. 【CTSC 2015】&【APIO 2015】酱油记

    蒟蒻有幸参加了神犇云集的CTSC & APIO 2015,感觉真是被虐成傻逼了……这几天一直没更新博客,今天就来补一下吧~~(不过不是题解……) Day 0 从太原到北京现在坐高铁只需3小时= ...

  3. bzoj 4070 [Apio2015]雅加达的摩天楼 Dijkstra+建图

    [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 644  Solved: 238[Submit][Status][D ...

  4. 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路

    [BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...

  5. BZOJ 4070:[APIO2015]雅加达的摩天楼 最短路

    4070: [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 164[Submit][Sta ...

  6. luogu_3645: 雅加达的摩天楼

    雅加达的摩天楼 题意描述: 有\(N\)座摩天楼,从左到右依次编号为\(0\)到\(N-1\). 有\(M\)个信息传递员,编号依次为\(0\)到\(M-1\).编号为i的传递员最初在编号为\(B_i ...

  7. 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)

    [题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...

  8. luogu P3645 [APIO2015]雅加达的摩天楼 分块 根号分治

    LINK:雅加达的摩天楼 容易想到设\(f_{i,j}\)表示第i个\(doge\)在第j层楼的最小步数. 转移显然是bfs.值得一提的是把初始某层的\(doge\)加入队列 然后转移边权全为1不需要 ...

  9. 【BZOJ 4070】【APIO 2015】雅加达的摩天楼

    http://www.lydsy.com/JudgeOnline/problem.php?id=4070 分块建图. 对每个\(P_i\)分类讨论,\(P_i>\sqrt N\)则直接连边,边数 ...

随机推荐

  1. Smart3D系列教程8之 《模型合并——相邻地区多次建模结果合并》

    迄今为止,Wish3D已经出品推出了7篇系列教程,从倾斜摄影的原理方法.采集照片的技巧.Smart3D各模块的功能应用.小物件的照片重建.大区域的地形重建到DSM及正射影像的处理生产,立足于建模软件的 ...

  2. 计算广告、推荐系统论文以及DSP综述

    http://www.huxmarket.com/detail/2966 DSP场景假定前提: 以CTR预估为例,向广告主以CPC(OCPC)方式收费,向ADX以CPM方式付费.投放计划受预算限制,在 ...

  3. angular 资源路径问题

    1.templateUrl .component("noData",{ templateUrl:"components/noData.html" // 注意相对 ...

  4. SpringMVC:文件上传

    MultipartFile attach HttpServletRequest re commons-io-2.0.jar (一定要用2.0以上的版本,否则没有copyInputStreamToFil ...

  5. JobConf

    /**  * A map/reduce job configuration. * 翻译:一个map/reduce作业配置 * <p><code>JobConf</code ...

  6. ios文件系统文件目录操作

    对于一个运行在iPhone得app,它只能访问自己根目录下得一些文件(所谓sandbox). 一个app发布到iPhone上后,目录结构如下: 1.其中获取 app root 可以用 NSHomeDi ...

  7. javascript 高级编程系列 - 继承

    1. 原型链继承 (缺点:子类继承父类的引用类型的属性值会在各个实例中共享,创建子类实例时无法向父类构造函数传递参数) // 定义父类构造函数 function SuperClass(father, ...

  8. Java、C++、Python、Ruby、PHP、C#和JavaScript的理解

    Java.C++.Python.Ruby.PHP.C#和JavaScript和日本动漫里的那些大家熟悉的动漫人物结合起来.依据他们的身世.个人经历来生动的表达各编程语言的发展历程.原文内容例如以下:  ...

  9. 使用Python处理Excel文件的一些代码示例

    笔记:使用Python处理Excel文件的一些代码示例,以下代码来自于<Python数据分析基础>一书,有删改 #!/usr/bin/env python3 # 导入读取Excel文件的库 ...

  10. Dash 使用

    花了 160 买了这个软件,至少看一遍它的 user guide,钱不能白花. https://kapeli.com/guide/guide.html 设置全局快捷键 Preference -> ...