传送门

不明白为什么大佬们一眼就看出这是最小割……

所以总而言之这就是一个最小割我也不知道为什么

然后边数太多直接跑会炸,所以要把平面图转对偶图,然后跑一个最短路即可

至于建图……请看代码我实在无能为力

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e6+,M=2e6+;
struct node{
int u,dis;
node(){}
node(int u,int dis):u(u),dis(dis){}
inline bool operator <(const node &b)const
{return dis>b.dis;}
};
int head[N],ver[M],edge[M],Next[M],tot;
int dis[N],vis[N];
int n,S,T,x;
priority_queue<node> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
}
int spfa(){
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
q.push(node(S,)),dis[S]=;
while(!q.empty()){
int u=q.top().u;q.pop();
if(vis[u]) continue;
vis[u]=;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(cmin(dis[v],dis[u]+edge[i]))
q.push(node(v,dis[v]));
}
}
return dis[T];
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();S=n*n+,T=S+;
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
x=read();
i==?add(j,T,x):i==n?add(S,(i-)*n+j,x):add(i*n+j,(i-)*n+j,x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
x=read();
j==?add(S,(i-)*n+j+,x):j==n?add(i*n,T,x):add((i-)*n+j,(i-)*n+j+,x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
x=read();
i==?add(T,j,x):i==n?add((i-)*n+j,S,x):add((i-)*n+j,i*n+j,x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
x=read();
j==?add((i-)*n+j+,S,x):j==n?add(T,i*n,x):add((i-)*n+j+,(i-)*n+j,x);
}
printf("%d\n",spfa());
return ;
}

洛谷P2046 [NOI2010]海拔(最小割,平面图转对偶图)的更多相关文章

  1. 洛谷$P2046\ [NOI2010]$海拔 网络流+对偶图

    正解:网络流+对偶图 解题报告: 传送门$QwQ$ $umm$之前省选前集训的时候叶佬考过?然而这和我依然不会做有什么关系呢$kk$ 昂这题首先要两个结论?第一个是说每个位置的海拔一定是0/1,还一个 ...

  2. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  3. 【洛谷P3329】 [ZJOI2011]最小割(最小割树)

    洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...

  4. 洛谷2046 NOI2010海拔

    QwQ题目太长 这里就不复制了 题目 这个题...算是个比较经典的平面图最小割变成对偶图的最短路了QwQ 首先考虑最小割应该怎么做. 有一个性质,就是每个点的海拔要么是1,要么是0 QwQ不过这个我不 ...

  5. [NOI2010]海拔(最小割)

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个 ...

  6. 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...

  7. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

  8. [NOI2010]海拔——最小割+对偶图

    题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...

  9. BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...

随机推荐

  1. Java for LeetCode 117 Populating Next Right Pointers in Each Node II

    Follow up for problem "Populating Next Right Pointers in Each Node". What if the given tre ...

  2. Vue:实践学习笔记(5)——Vue-Cli脚手架的使用

    Vue:实践学习笔记(5)——Vue-Cli脚手架的使用 快速开始 项目配置 可视化配置 vue ui 命令配置 vue init webpack vue-demo(项目名) 运行测试 进入vue-d ...

  3. Java中的内存泄漏

    [转]介绍Java中的内存泄漏 1. 什么是内存泄漏? 内存泄漏的定义:对象已经没有被应用程序使用,但是垃圾回收器没办法移除它们,因为还在被引用着. 要想理解这个定义,我们需要先了解一下对象在内存中的 ...

  4. CentOS已经安装命令,但提示找不到

    今天在虚机上装了个CENTOS.装好后,好多命令都提示找不到,如tcpdump.arp.ifconfig.查看安装包,都已经安装过. ------------无敌分割线------------- # ...

  5. Codeforces Round #423 (Div. 2, rated, based on VK Cup Finals)

    题目链接:http://codeforces.com/contest/828 A. Restaurant Tables time limit per test 1 second memory limi ...

  6. 51nod 1533 && CF538F

    题目:难以简述,请传送门 神犇题解Ⅰ   神犇题解Ⅱ 好劲啊跪在地上..完全没接触过K叉树的性质.. 对于每个询问,我们并不关心叶节点,只关心其他的节点.而一个完整K叉树的内节点个数是O(n/k)的, ...

  7. python无法安装cv2的解决办法

    问题:在windows命令窗口输入pip install cv2后出现:Could not find a version that satisfies the requirement cv2... 解 ...

  8. JavaUtil_03_图片处理工具类

    一.源码 功能:缩放图像.切割图像.图像类型转换.彩色转黑白.文字水印.图片水印等 package com.ray.dingtalk.util; import java.awt.AlphaCompos ...

  9. Android 在Activity中对SQLite的操作

    注册 package com.scme.ui; import android.app.Activity; import android.content.Intent; import android.o ...

  10. python打印字体颜色

        格式:\033[显示方式;前景色;背景色m 显示方式           意义-------------------------0                终端默认设置1         ...