densenet 中文汉字手写识别,代码如下:

import tensorflow as tf
import os
import random
import math
import tensorflow.contrib.slim as slim
import time
import logging
import numpy as np
import pickle
from PIL import Image import tensorflow as tf
#from tflearn.layers.conv import global_avg_pool
from tensorflow.contrib.layers import batch_norm, flatten
from tensorflow.contrib.framework import arg_scope
import numpy as np # Hyperparameter
growth_k = 12
nb_block = 2 # how many (dense block + Transition Layer) ?
init_learning_rate = 1e-4
epsilon = 1e-8 # AdamOptimizer epsilon
dropout_rate = 0.2 # Momentum Optimizer will use
nesterov_momentum = 0.9
weight_decay = 1e-4 # Label & batch_size
class_num = 3755
batch_size = 128 total_epochs = 50 def conv_layer(input, filter, kernel, stride=1, layer_name="conv"):
with tf.name_scope(layer_name):
network = tf.layers.conv2d(inputs=input, filters=filter, kernel_size=kernel, strides=stride, padding='SAME')
return network def Global_Average_Pooling(x, stride=1):
#It is global average pooling without tflearn
width = np.shape(x)[1]
height = np.shape(x)[2]
pool_size = [width, height]
return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride) # The stride value does not matter
"""
return global_avg_pool(x, name='Global_avg_pooling')
# But maybe you need to install h5py and curses or not
""" def Batch_Normalization(x, training, scope):
with arg_scope([batch_norm],
scope=scope,
updates_collections=None,
decay=0.9,
center=True,
scale=True,
zero_debias_moving_mean=True) :
return tf.cond(training,
lambda : batch_norm(inputs=x, is_training=training, reuse=None),
lambda : batch_norm(inputs=x, is_training=training, reuse=True)) def Drop_out(x, rate, training) :
return tf.layers.dropout(inputs=x, rate=rate, training=training) def Relu(x):
return tf.nn.relu(x) def Average_pooling(x, pool_size=[2,2], stride=2, padding='VALID'):
return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding) def Max_Pooling(x, pool_size=[3,3], stride=2, padding='VALID'):
return tf.layers.max_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding) def Concatenation(layers) :
return tf.concat(layers, axis=3) def Linear(x) :
return tf.layers.dense(inputs=x, units=class_num, name='linear') class DenseNet():
def __init__(self, x, nb_blocks, filters, training):
self.nb_blocks = nb_blocks
self.filters = filters
self.training = training
self.model = self.Dense_net(x) def bottleneck_layer(self, x, scope):
# print(x)
with tf.name_scope(scope):
x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
x = Relu(x)
x = conv_layer(x, filter=4 * self.filters, kernel=[1,1], layer_name=scope+'_conv1')
x = Drop_out(x, rate=dropout_rate, training=self.training) x = Batch_Normalization(x, training=self.training, scope=scope+'_batch2')
x = Relu(x)
x = conv_layer(x, filter=self.filters, kernel=[3,3], layer_name=scope+'_conv2')
x = Drop_out(x, rate=dropout_rate, training=self.training) # print(x) return x def transition_layer(self, x, scope):
with tf.name_scope(scope):
x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
x = Relu(x)
x = conv_layer(x, filter=self.filters, kernel=[1,1], layer_name=scope+'_conv1')
x = Drop_out(x, rate=dropout_rate, training=self.training)
x = Average_pooling(x, pool_size=[2,2], stride=2) return x def dense_block(self, input_x, nb_layers, layer_name):
with tf.name_scope(layer_name):
layers_concat = list()
layers_concat.append(input_x) x = self.bottleneck_layer(input_x, scope=layer_name + '_bottleN_' + str(0)) layers_concat.append(x) for i in range(nb_layers - 1):
x = Concatenation(layers_concat)
x = self.bottleneck_layer(x, scope=layer_name + '_bottleN_' + str(i + 1))
layers_concat.append(x) x = Concatenation(layers_concat) return x def Dense_net(self, input_x):
x = conv_layer(input_x, filter=2 * self.filters, kernel=[7,7], stride=2, layer_name='conv0')
x = Max_Pooling(x, pool_size=[3,3], stride=2) for i in range(self.nb_blocks) :
# 6 -> 12 -> 48
x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i))
x = self.transition_layer(x, scope='trans_'+str(i)) """
x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1')
x = self.transition_layer(x, scope='trans_1') x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2')
x = self.transition_layer(x, scope='trans_2') x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3')
x = self.transition_layer(x, scope='trans_3')
""" x = self.dense_block(input_x=x, nb_layers=32, layer_name='dense_final') # 100 Layer
x = Batch_Normalization(x, training=self.training, scope='linear_batch')
x = Relu(x)
x = Global_Average_Pooling(x)
x = flatten(x)
x = Linear(x) # x = tf.reshape(x, [-1, 10])
return x def build_graph(top_k):
# with tf.device('/cpu:0'):
# keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')
images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='image_batch')
# label = tf.placeholder(tf.float32, shape=[None, 10])
labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')
training_flag = tf.placeholder(tf.bool)
logits = DenseNet(x=images, nb_blocks=nb_block, filters=growth_k, training=training_flag).model
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) """
l2_loss = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()])
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=nesterov_momentum, use_nesterov=True)
train = optimizer.minimize(cost + l2_loss * weight_decay)
In paper, use MomentumOptimizer
init_learning_rate = 0.1
but, I'll use AdamOptimizer
""" global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
rate = tf.train.exponential_decay(2e-4, global_step, decay_steps=2000, decay_rate=0.97, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=rate, epsilon=epsilon)
train_op = optimizer.minimize(loss, global_step=global_step) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32)) probabilities = logits
tf.summary.scalar('loss', loss)
tf.summary.scalar('accuracy', accuracy)
merged_summary_op = tf.summary.merge_all()
predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)
accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32)) return {'images': images,
'labels': labels,
'training_flag': training_flag,
'top_k': top_k,
'global_step': global_step,
'train_op': train_op,
'loss': loss,
'accuracy': accuracy,
'accuracy_top_k': accuracy_in_top_k,
'merged_summary_op': merged_summary_op,
'predicted_distribution': probabilities,
'predicted_index_top_k': predicted_index_top_k,
'predicted_val_top_k': predicted_val_top_k} logger = logging.getLogger('Training a chinese write char recognition')
logger.setLevel(logging.INFO)
# formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
logger.addHandler(ch) run_mode = "train"
charset_size = class_num
max_steps = 122002
save_steps = 1000
cur_test_acc = 0 """
# for online 3755 words training
checkpoint_dir = '/aiml/dfs/checkpoint_888/'
train_data_dir = '/aiml/data/train/'
test_data_dir = '/aiml/data/test/'
log_dir = '/aiml/dfs/'
""" checkpoint_dir = './checkpoint_densenet/'
train_data_dir = './data/train/'
test_data_dir = './data/test/'
log_dir = './' tf.app.flags.DEFINE_string('mode', run_mode, 'Running mode. One of {"train", "valid", "test"}')
tf.app.flags.DEFINE_boolean('random_flip_up_down', True, "Whether to random flip up down")
tf.app.flags.DEFINE_boolean('random_brightness', True, "whether to adjust brightness")
tf.app.flags.DEFINE_boolean('random_contrast', True, "whether to random constrast") tf.app.flags.DEFINE_integer('charset_size', charset_size, "Choose the first `charset_size` character to conduct our experiment.")
tf.app.flags.DEFINE_integer('image_size', 64, "Needs to provide same value as in training.")
tf.app.flags.DEFINE_boolean('gray', True, "whether to change the rbg to gray")
tf.app.flags.DEFINE_integer('max_steps', max_steps, 'the max training steps ')
tf.app.flags.DEFINE_integer('eval_steps', 50, "the step num to eval")
tf.app.flags.DEFINE_integer('save_steps', save_steps, "the steps to save") tf.app.flags.DEFINE_string('checkpoint_dir', checkpoint_dir, 'the checkpoint dir')
tf.app.flags.DEFINE_string('train_data_dir', train_data_dir, 'the train dataset dir')
tf.app.flags.DEFINE_string('test_data_dir', test_data_dir, 'the test dataset dir')
tf.app.flags.DEFINE_string('log_dir', log_dir, 'the logging dir') ##############################
# resume training
tf.app.flags.DEFINE_boolean('restore', True, 'whether to restore from checkpoint')
############################## tf.app.flags.DEFINE_boolean('epoch', 10, 'Number of epoches')
tf.app.flags.DEFINE_boolean('batch_size', 128, 'Validation batch size')
FLAGS = tf.app.flags.FLAGS class DataIterator:
def __init__(self, data_dir):
# Set FLAGS.charset_size to a small value if available computation power is limited.
truncate_path = data_dir + ('%05d' % FLAGS.charset_size)
print(truncate_path)
self.image_names = []
for root, sub_folder, file_list in os.walk(data_dir):
if root < truncate_path:
self.image_names += [os.path.join(root, file_path) for file_path in file_list]
random.shuffle(self.image_names)
self.labels = [int(file_name[len(data_dir):].split(os.sep)[0]) for file_name in self.image_names] @property
def size(self):
return len(self.labels) @staticmethod
def data_augmentation(images):
if FLAGS.random_flip_up_down:
# images = tf.image.random_flip_up_down(images)
images = tf.contrib.image.rotate(images, random.randint(0, 15) * math.pi / 180, interpolation='BILINEAR')
if FLAGS.random_brightness:
images = tf.image.random_brightness(images, max_delta=0.3)
if FLAGS.random_contrast:
images = tf.image.random_contrast(images, 0.8, 1.2)
return images def input_pipeline(self, batch_size, num_epochs=None, aug=False):
images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)
labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)
input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs) labels = input_queue[1]
images_content = tf.read_file(input_queue[0])
images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)
if aug:
images = self.data_augmentation(images)
new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32)
images = tf.image.resize_images(images, new_size)
image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,
min_after_dequeue=10000)
return image_batch, label_batch def train():
print('Begin training')
train_feeder = DataIterator(FLAGS.train_data_dir)
test_feeder = DataIterator(FLAGS.test_data_dir)
with tf.Session() as sess:
train_images, train_labels = train_feeder.input_pipeline(batch_size=FLAGS.batch_size, aug=True)
test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size)
graph = build_graph(top_k=1)
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
saver = tf.train.Saver() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val')
start_step = 0
if FLAGS.restore:
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
print("restore from the checkpoint {0}".format(ckpt))
start_step += int(ckpt.split('-')[-1]) logger.info(':::Training Start:::')
try:
while not coord.should_stop():
start_time = time.time()
train_images_batch, train_labels_batch = sess.run([train_images, train_labels])
feed_dict = {graph['images']: train_images_batch,
graph['labels']: train_labels_batch,
graph['training_flag']: True}
_, loss_val, train_summary, step = sess.run(
[graph['train_op'], graph['loss'], graph['merged_summary_op'], graph['global_step']],
feed_dict=feed_dict)
train_writer.add_summary(train_summary, step)
end_time = time.time()
logger.info("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val))
if step > FLAGS.max_steps:
break
accuracy_test = 0
if step % FLAGS.eval_steps == 1:
test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
feed_dict = {graph['images']: test_images_batch,
graph['labels']: test_labels_batch,
graph['training_flag']: False}
accuracy_test, test_summary = sess.run(
[graph['accuracy'], graph['merged_summary_op']],
feed_dict=feed_dict)
test_writer.add_summary(test_summary, step)
logger.info('===============Eval a batch=======================')
logger.info('the step {0} test accuracy: {1}'
.format(step, accuracy_test))
logger.info('===============Eval a batch=======================')
if step % FLAGS.save_steps == 1:
logger.info('Save the ckpt of {0}'.format(step))
saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'),
global_step=graph['global_step'])
global cur_test_acc
cur_test_acc = accuracy_test
except tf.errors.OutOfRangeError:
logger.info('==================Train Finished================')
saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'), global_step=graph['global_step'])
finally:
coord.request_stop()
coord.join(threads) def validation():
print('validation')
test_feeder = DataIterator(FLAGS.test_data_dir) final_predict_val = []
final_predict_index = []
groundtruth = [] with tf.Session() as sess:
test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size, num_epochs=1)
graph = build_graph(top_k=3) sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer()) # initialize test_feeder's inside state coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord) saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
print("restore from the checkpoint {0}".format(ckpt)) print(':::Start validation:::')
try:
i = 0
acc_top_1, acc_top_k = 0.0, 0.0
while not coord.should_stop():
i += 1
start_time = time.time()
test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
feed_dict = {graph['images']: test_images_batch,
graph['labels']: test_labels_batch,
graph['training_flag']: False}
batch_labels, probs, indices, acc_1, acc_k = sess.run([graph['labels'],
graph['predicted_val_top_k'],
graph['predicted_index_top_k'],
graph['accuracy'],
graph['accuracy_top_k']], feed_dict=feed_dict)
final_predict_val += probs.tolist()
final_predict_index += indices.tolist()
groundtruth += batch_labels.tolist()
acc_top_1 += acc_1
acc_top_k += acc_k
end_time = time.time()
logger.info("the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)"
.format(i, end_time - start_time, acc_1, acc_k)) except tf.errors.OutOfRangeError:
logger.info('==================Validation Finished================')
acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size
acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size
logger.info('top 1 accuracy {0} top k accuracy {1}'.format(acc_top_1, acc_top_k))
finally:
coord.request_stop()
coord.join(threads)
return {'prob': final_predict_val, 'indices': final_predict_index, 'groundtruth': groundtruth} def inference(image):
print('inference')
temp_image = Image.open(image).convert('L')
temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS)
temp_image = np.asarray(temp_image) / 255.0
temp_image = temp_image.reshape([-1, 64, 64, 1])
with tf.Session() as sess:
logger.info('========start inference============')
# images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1])
# Pass a shadow label 0. This label will not affect the computation graph.
graph = build_graph(top_k=3)
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
predict_val, predict_index = sess.run([graph['predicted_val_top_k'], graph['predicted_index_top_k']],
feed_dict={graph['images']: temp_image, graph['training_flag']: False})
return predict_val, predict_index def main(_):
print(FLAGS.mode)
if FLAGS.mode == "train":
train()
elif FLAGS.mode == 'validation':
dct = validation()
result_file = 'result.dict'
logger.info('Write result into {0}'.format(result_file))
with open(result_file, 'wb') as f:
pickle.dump(dct, f)
logger.info('Write file ends')
elif FLAGS.mode == 'inference':
image_path = './data/00098/102544.png'
final_predict_val, final_predict_index = inference(image_path)
logger.info('the result info label {0} predict index {1} predict_val {2}'.format(190, final_predict_index,
final_predict_val)) if __name__ == "__main__":
tf.app.run()

densenet模型参考:https://github.com/taki0112/Densenet-Tensorflow

效果:

===============Eval a batch=======================
the step 34001.0 test accuracy: 0.765625
===============Eval a batch=======================

Compare Structure (CNN, ResNet, DenseNet)

densenet tensorflow 中文汉字手写识别的更多相关文章

  1. TensorFlow MNIST(手写识别 softmax)实例运行

    TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...

  2. TensorFlow 入门之手写识别(MNIST) softmax算法

    TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

  3. TensorFlow 入门之手写识别CNN 三

    TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...

  4. TensorFlow 入门之手写识别(MNIST) softmax算法 二

    TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

  5. TensorFlow 入门之手写识别(MNIST) 数据处理 一

    TensorFlow 入门之手写识别(MNIST) 数据处理 一 MNIST Fly softmax回归 准备数据 解压 与 重构 手写识别入门 MNIST手写数据集 图片以及标签的数据格式处理 准备 ...

  6. 基于tensorflow的MNIST手写识别

    这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在 ...

  7. 使用tensorflow实现mnist手写识别(单层神经网络实现)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...

  8. 基于tensorflow实现mnist手写识别 (多层神经网络)

    标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...

  9. Tensorflow快餐教程(1) - 30行代码搞定手写识别

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lusing/article/details ...

随机推荐

  1. Android开发之WebView具体解释

    概述: 一个显示网页的视图.这个类是你能够滚动自己的Web浏览器或在你的Activity中简单地显示一些在线内容的基础.它使用了WebKit渲染引擎来显示网页,包含向前和向后导航的方法(通过历史记录) ...

  2. 【Excle数据透视】如何创建一个数据透视表

    数据透视表可以汇总.分析.浏览和提供工作表数据或外部数据源的汇总数据 创建方法一 通过”插入”创建,具体操作请看下图: 创建方法二 通过快捷键创建 使用[ALT+D+P]创建 首先按下alt键,然后依 ...

  3. 面向对象程序的设计原则--Head First 设计模式笔记

    一.找出应用中可能需要变化的地方,把它们独立出来,不要和那些不需要变化的代码混在一起. 把会变化的部分取出并“封装”起来,好让其他部分不会受到影响.这样,代码变化引起的不经意后果变少,系统变得更有弹性 ...

  4. Web前端学习攻略

    HTML+CSS: HTML进阶.CSS进阶.div+css布局.HTML+css整站开发. JavaScript基础: Js基础教程.js内置对象常用方法.常见DOM树操作大全.ECMAscript ...

  5. C# Excel

    using System.IO;using System.Text;namespace iLIS.Common{ ///<summary> ///生成Excel文档内容 /// 存入工作流 ...

  6. Robot Framework ---Selenium API

    一.浏览器驱动 通过不同的浏览器执行脚本. Open Browser Htpp://www.xxx.com chrome 浏览器对应的关键字: firefox FireFox ff internete ...

  7. Linux进程间通信(IPC)编程实践(十二)Posix消息队列--基本API的使用

    posix消息队列与system v消息队列的区别: (1)对posix消息队列的读总是返回最高优先级的最早消息,对system v消息队列的读则能够返回随意指定优先级的消息. (2)当往一个空队列放 ...

  8. Oracle -- 连接每行的内容

    select wm_concat(message) from (        select rownum no, 'Case ''' || code || '''' || '' || chr(10) ...

  9. ios -- 延迟3秒触发performSelector

    [self performSelector:@selector(changeText:) withObject:@"Happy aha" afterDelay:3];

  10. android -volley-请求数据

    private List<gson.DataBean>arrGson;//请求的数据 //请求数据的方法 public void initData() { RequestQueue mQu ...