POJ1430 Binary Stirling Numbers
@(POJ)[Stirling數, 排列組合, 數形結合]
Description
The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts:
{1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}
{1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.
There is a recurrence which allows to compute S(n, m) for all m and n.
S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;
S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.
Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2.
Example:
S(4, 2) mod 2 = 1.
Task
Write a program which for each data set:
reads two positive integers n and m,
computes S(n, m) mod 2,
writes the result.
Input
The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 200. The data sets follow.
Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9.
Output
The output should consist of exactly d lines, one line for each data set. Line i, 1 <= i <= d, should contain 0 or 1, the value of S(ni, mi) mod 2.
Sample Input
1
4 2
Sample Output
1
Solution
題意:
求斯特林數$$ \left{ \begin{array}{} n \ k \end{array}{} \right} % 2$$$$n, m \in [1, 10^9]$$
這題直接求解肯定是會T的, 因此考慮優化.
轉載自sdchr博客
侵刪


代碼附上:
#include<cstdio>
#include<cctype>
using namespace std;
inline int read()
{
int x = 0, flag = 1;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
}
void println(int x)
{
if(x < 0)
putchar('-'), x *= - 1;
if(x == 0)
putchar('0');
int ans[1 << 5], top = 0;
while(x)
ans[top ++] = x % 10, x /= 10;
for(; top; top --)
putchar(ans[top - 1] + '0');
putchar('\n');
}
long long getQuantity(int x)
{
long long ret = 0;
for(int i = 2; i <= x; i <<= 1)
ret += x / i;
return ret;
}
int calculate(int x, int y)
{
return getQuantity(x) - getQuantity(y) - getQuantity(x - y) == 0;
}
int main()
{
int T = read();
while(T --)
{
int n = read(), m = read();
int d = n - m, oddQua = (m + 1) / 2;
println(calculate(d + oddQua - 1, oddQua - 1));
}
}
POJ1430 Binary Stirling Numbers的更多相关文章
- poj 1430 Binary Stirling Numbers
Binary Stirling Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1761 Accepted ...
- 【poj1430】Binary Stirling Numbers(斯特林数+组合数)
传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...
- POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)
题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1 ...
- UVALIVE 2431 Binary Stirling Numbers
转自别人的博客.这里记录一下 这题是定义如下的一个数: S(0, 0) = 1; S(n, 0) = 0 for n > 0;S(0, m) = 0 for m > 0; S(n, m) ...
- Binary Stirling Numbers
http://poj.org/problem?id=1430 题目: 求 第二类 斯特林数 的 奇偶性 即 求 s2 ( n , m ) % 2 : 题解: https://blog.csdn.ne ...
- poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题
题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...
- acm数学(转)
这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...
- [转] POJ数学问题
转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合 ...
- ACM数学
1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...
随机推荐
- 深入Python底层,谈谈内存管理机制
说到内存管理,就先说一下垃圾回收吧.垃圾回收是Python,Java等语言管理内存的一种方式,说的直白些,就是清除无用的垃圾对象.C语言及C++中,需要通过malloc来进行内存的申请,通过free而 ...
- SAS描述统计量
MEANS过程 MEAN过程默认输出的统计量有:观测总数.均值.标准差.最大值和最小值.如果要计算其他统计量或其中的某一些统计量,则可在PROC语句中指定统计量的关键字. BY语句规定了分组变量,要求 ...
- ie9/8的iframe中jQuery报错
此文章用于对工作中遇到的问题进行记录 jQuery 版本:1.9.1 按照一般的思路,jquery 1.x的是支持ie9及以下的,但是今天发现jquery报错了,代码错误位置在源码版本的第4888行 ...
- pip 设置国内源提高速度
临时使用: 可以在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple 例如:pip install -i https://pypi.tuna. ...
- Linux中的more命令
ore命令,功能类似 cat , cat命令是整个文件的内容从上到下显示在屏幕上. more会以一页一页的显示方便使用者逐页阅读,而最基本的指令就是按空白键(space)就往下一页显示,而且还有搜寻 ...
- java 8:I / O 基础
原文地址:https://docs.oracle.com/javase/tutorial/essential/io/index.html 说明:每一个点都有一篇详细的文章与之对应,每翻译完一篇文章会更 ...
- ruby操作mysql
require "win32ole" require 'pathname' require 'mysql2' excel = WIN32OLE.new('excel.applica ...
- 《快速开发》通过Maven创建WebService项目Hello World!
有多快? 整个过程3分钟.不用下载jar包,不用一步一步创建Web Project... 你需要的就是在Maven库里选一个archetype,然后一路Next~ 先看结果: 准备好了吗?我们起飞: ...
- 给某个li标签家样式
HTML: <div class="tabs clearfix"> <ul id="der"> <li ><a hre ...
- P2134 百日旅行 (斜率优化,DP)
题目链接 Solution 斜率优化\(DP\). 今天下午才打的第一道题 QwQ... \(90\) 分很简单,一个简单的递推. 令 \(f[i]\) 为最后一天旅游的花费, \(g[i]\) 为最 ...