@(POJ)[Stirling數, 排列組合, 數形結合]

Description

The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts:

{1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}

{1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.

There is a recurrence which allows to compute S(n, m) for all m and n.

S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;

S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.

Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2.

Example:

S(4, 2) mod 2 = 1.

Task

Write a program which for each data set:

reads two positive integers n and m,

computes S(n, m) mod 2,

writes the result.

Input

The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 200. The data sets follow.

Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9.

Output

The output should consist of exactly d lines, one line for each data set. Line i, 1 <= i <= d, should contain 0 or 1, the value of S(ni, mi) mod 2.

Sample Input

1
4 2

Sample Output

1

Solution

題意:

求斯特林數$$ \left{ \begin{array}{} n \ k \end{array}{} \right} % 2$$$$n, m \in [1, 10^9]$$

這題直接求解肯定是會T的, 因此考慮優化.

轉載自sdchr博客

侵刪





代碼附上:

#include<cstdio>
#include<cctype>
using namespace std; inline int read()
{
int x = 0, flag = 1;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
} void println(int x)
{
if(x < 0)
putchar('-'), x *= - 1;
if(x == 0)
putchar('0');
int ans[1 << 5], top = 0;
while(x)
ans[top ++] = x % 10, x /= 10;
for(; top; top --)
putchar(ans[top - 1] + '0');
putchar('\n');
} long long getQuantity(int x)
{
long long ret = 0; for(int i = 2; i <= x; i <<= 1)
ret += x / i; return ret;
} int calculate(int x, int y)
{
return getQuantity(x) - getQuantity(y) - getQuantity(x - y) == 0;
} int main()
{
int T = read(); while(T --)
{
int n = read(), m = read();
int d = n - m, oddQua = (m + 1) / 2;
println(calculate(d + oddQua - 1, oddQua - 1));
}
}

POJ1430 Binary Stirling Numbers的更多相关文章

  1. poj 1430 Binary Stirling Numbers

    Binary Stirling Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1761   Accepted ...

  2. 【poj1430】Binary Stirling Numbers(斯特林数+组合数)

    传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...

  3. POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)

    题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1 ...

  4. UVALIVE 2431 Binary Stirling Numbers

    转自别人的博客.这里记录一下 这题是定义如下的一个数: S(0, 0) = 1; S(n, 0) = 0 for n > 0;S(0, m) = 0 for m > 0; S(n, m) ...

  5. Binary Stirling Numbers

    http://poj.org/problem?id=1430 题目: 求 第二类 斯特林数 的 奇偶性  即 求 s2 ( n , m ) % 2 : 题解: https://blog.csdn.ne ...

  6. poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题

    题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...

  7. acm数学(转)

    这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...

  8. [转] POJ数学问题

    转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合 ...

  9. ACM数学

     1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...

随机推荐

  1. stm32L0工程建立(HAL+IAR,无cubemx)

    https://files.cnblogs.com/files/CodeWorkerLiMing/STM32HAL%E5%BA%93%E5%AD%A6%E4%B9%A0%E2%80%94%E5%B7% ...

  2. mysql查询的语法

    单表查询语法 SELECT DISTINCT 字段1,字段2... FROM 表名 WHERE 条件 GROUP BY field HAVING 筛选 ORDER BY field LIMIT 限制条 ...

  3. JAVA-基础(二) java.lang

    1.String类提供了许多从String对象中截取字符的方法 1.1 char charAt(int where) 1.2 void getChars(int sourceStart, int so ...

  4. luogu1725 琪露诺

    单调队列 #include <iostream> #include <cstdio> using namespace std; int n, l, r, dp[400005], ...

  5. ubuntu linux下各种格式软件包的安装卸载

    http://www.cnblogs.com/mo-beifeng/archive/2011/08/14/2137954.html

  6. 忘记MySQL的root密码的解决方法

    经常会有朋友或者同事问起,MySQL 的 root 密码忘了,不知道改怎么办. 其实解决方法很简单,下面是详细的操作步骤. (1)修改配置文件my.cnf,在配置文件[mysqld]下添加skip-g ...

  7. 九度oj 题目1361:翻转单词顺序

    题目描述: JOBDU最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事Cat对Fish写的内容颇感兴趣,有一天他向Fish借来翻看,但却读不懂它的意思.例如,“stu ...

  8. xampp下bugfree部署

    以Bugfree3.0.4为例,讲解如何搭建LAMP架构的Web服务器. Bugfree是一个XAMPP架构的网站,XAMPP(Apache+MySQL+PHP+PERL)是一个功能强大的搭建XAMP ...

  9. kb-07线段树-12--二分查找区间边界

    /* hdu4614 本题刚开始想能不能记录该区间最前面开始的点,最后面的点,区间空的数量:但是病不行 然后线段树的本质是区间操作,所以!这题主要就是区间的空的全放满,只要定出区间的边界就好办了: 这 ...

  10. 二进制<4>

    位运算简介及实用技巧(四):实战篇 下面分享的是我自己写的三个代码,里面有些题目也是我自己出的.这些代码都是在我的Pascal时代写的,恕不提供C语言了.代码写得并不好,我只是想告诉大家位运算在实战中 ...