Building a Space Station POJ - 2031

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834 题意:给出三维的球,四个参数分别为xyz坐标和球的半径,问最少建多长的路可以使得所有的连通起来
思路:遍历每一颗球到其他所有球的长度,之后跑最小生成树
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
const int maxn = 1e5+;
const ll mod = 1e9+; struct node{
double x,y,z,r;
}a[]; double dis[][];
double mincost[];
bool vis[];
int n;
double prim()
{
for(int i=;i<n;i++)
{
mincost[i] = INF;
vis[i] = false;
}
mincost[]=;
double res = ;
while(true)
{
int v = -;
for(int u=;u<n;u++)
if(!vis[u] && (v == - || mincost[u] < mincost[v]))
v = u;
if(v == -)
break;
vis[v] = true;
res += mincost[v];
for(int u=;u<n;u++)
mincost[u] = min(mincost[u],dis[v][u]);
}
return res;
}
int main()
{ while(scanf("%d",&n) && n)
{
for(int i=;i<n;i++)
{
scanf("%lf %lf %lf %lf",&a[i].x,&a[i].y,&a[i].z,&a[i].r);
}
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
double s=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y)+(a[i].z-a[j].z)*(a[i].z-a[j].z))-a[i].r-a[j].r;
if(s<=)
dis[i][j]=;
else
dis[i][j]=s;
}
}
double ans = prim();
printf("%.3f\n",ans);
}
}
												

Building a Space Station POJ - 2031的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. C - Building a Space Station - poj 2031

    空间站是有一些球状的房间组成的,现在有一些房间但是没有相互连接,你需要设计一些走廊使他们都相通,当然,有些房间可能会有重合(很神奇的样子,重合距离是0),你需要设计出来最短的走廊使所有的点都连接. 分 ...

  4. Building a Space Station POJ - 2031 三维最小生成树,其实就是板子题

    #include<iostream> #include<cmath> #include<algorithm> #include<cstdio> usin ...

  5. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  9. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

随机推荐

  1. 服务器部署nginx报错 nginx: [warn] conflicting server name "localhost" on xxx.xxx.xxx.xxx:80, ignored

    问题 修改nginx配置参数后,使用nginx -t检查配置. 提示successfull后就可以使用 nginx -s reload来重新加载配置 我配置的过程中遇到这样的问题,就是绑定了主机名后, ...

  2. @b.windows.last.use

    @b.windows.last.use @b.windows.first.use be_true  一般用在step文件中

  3. PL/SQL中模拟EBS上下文

    有时,我们需要查询的表或视图,是具有OU屏蔽的,这时我们就需要模拟EBS中的上下文来实现查询数据. BEGIN fnd_global.apps_initialize(user_id =>1,re ...

  4. ArcMap中提取影像数据边界

    1.前言 客户手里有一些经过裁剪的不规则多边形影像数据(如图例所示),希望能批量获取该类影像的边界信息,即影像对应的面信息,边界线信息.这里我们提供一种利用镶嵌数据集Footprint图层的方法来获取 ...

  5. 腾讯云服务器手动和自动安装WordPress网站程序

    如果我们需要建站的话,对于基础个人网站.博客建站选择基础的1Mbps带宽配置的1GB内存的腾讯云服务器还是够用的,且如果我们需要用来建网站的话可以手工添加程序,以及有些面板,比如宝塔面板是自带CMS程 ...

  6. 使用HANA Web-based Development Workbench创建最简单的Server Side JavaScript

    服务器端的JavaScript, 看下wikipedia的介绍: https://en.wikipedia.org/wiki/JavaScript#Server-side_JavaScript Ser ...

  7. java之打印机服务通俗做法

    javax.print包是API的主包,其中包含的类和接口能够让你:1)发现打印服务(Print Services)2)指定打印数据的格式 3)从一个打印服务创建打印工作(print jobs) 4) ...

  8. libav(ffmpeg)简明教程(1)

    突然发现又有好久没有写技术blog了,主要原因是最近时间都用来研究libav去了(因为api极类似ffmpeg,虽然出自同一份代码的另外一个分支,因项目选用libav,故下文均用libav代替),其实 ...

  9. js中(break,continue,return)的区别

    break 一般用于跳出整个循环(for,while) continue  跳出本次循环,进入下一次循环 return 只能出现在函数体内,一旦执行return,后面的代码将不会执行,经常用retur ...

  10. bzoj3887: [Usaco2015 Jan]Grass Cownoisseur

    题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...