Building a Space Station POJ - 2031

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834 题意:给出三维的球,四个参数分别为xyz坐标和球的半径,问最少建多长的路可以使得所有的连通起来
思路:遍历每一颗球到其他所有球的长度,之后跑最小生成树
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
const int maxn = 1e5+;
const ll mod = 1e9+; struct node{
double x,y,z,r;
}a[]; double dis[][];
double mincost[];
bool vis[];
int n;
double prim()
{
for(int i=;i<n;i++)
{
mincost[i] = INF;
vis[i] = false;
}
mincost[]=;
double res = ;
while(true)
{
int v = -;
for(int u=;u<n;u++)
if(!vis[u] && (v == - || mincost[u] < mincost[v]))
v = u;
if(v == -)
break;
vis[v] = true;
res += mincost[v];
for(int u=;u<n;u++)
mincost[u] = min(mincost[u],dis[v][u]);
}
return res;
}
int main()
{ while(scanf("%d",&n) && n)
{
for(int i=;i<n;i++)
{
scanf("%lf %lf %lf %lf",&a[i].x,&a[i].y,&a[i].z,&a[i].r);
}
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
double s=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y)+(a[i].z-a[j].z)*(a[i].z-a[j].z))-a[i].r-a[j].r;
if(s<=)
dis[i][j]=;
else
dis[i][j]=s;
}
}
double ans = prim();
printf("%.3f\n",ans);
}
}
												

Building a Space Station POJ - 2031的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. C - Building a Space Station - poj 2031

    空间站是有一些球状的房间组成的,现在有一些房间但是没有相互连接,你需要设计一些走廊使他们都相通,当然,有些房间可能会有重合(很神奇的样子,重合距离是0),你需要设计出来最短的走廊使所有的点都连接. 分 ...

  4. Building a Space Station POJ - 2031 三维最小生成树,其实就是板子题

    #include<iostream> #include<cmath> #include<algorithm> #include<cstdio> usin ...

  5. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  9. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

随机推荐

  1. JMeter tomcat测试请求

    JMeter tomcat测试请求 Apache Jmeter是开源的压力测试工具,可以测试tomcat 的吞吐量等信息 下载地址: http://jmeter.apache.org/download ...

  2. 发布MVC网站的时候出现缺少WebHost等程序集问题的解决办法

    将一下几个dll 拷贝到bin文件夹下就行 链接:https://pan.baidu.com/s/17xhTdakzM_SQmOjJdZvviw 密码:c976

  3. <Android 基础(五)> MVVM

    介绍 MVVM,Model-View-ViewModel,与上次讲的MVP模式比较的类似,MVP中需要大量的接口文件,而MVVM模式下,View和ViewModel直接关联,使用上比较方便,简化了代码 ...

  4. 【Java/Android性能优 4】PreloadDataCache支持预取的数据缓存,使用简单,支持多种缓存算法,支持不同网络类型,扩展性强

    本文转自:http://www.trinea.cn/android/preloaddatacache/ 本文主要介绍一个支持自动向前或向后获取新数据的缓存的使用及功能.Android图片内存缓存可见I ...

  5. 再次尝试windows下msys+MinGW编译ffmpeg

    电脑上安装太多的开源库,环境变量里面一些常用的头文件都有几种,以前使用的编译ffmpeg的方法现在常常提示错误.从config.log中看,这些错误往往都是一些头文件引用错误导致.由于项目中继续编译自 ...

  6. Windows Phone Emulator 模拟器常用快捷键

    在使用Windows Phone 的开发的时候,在目前大家还很难买到真实的Windows Phone 设备的情况下,我们用来调试自己的程序经常用到的可能就是Emulator了.经常会有人问我说,用鼠标 ...

  7. codeforces 600C Make Palindrome

    要保证变化次数最少就是出现次数为奇数的相互转化,而且对应字母只改变一次.保证字典序小就是字典序大的字母变成字典序小的字母. 长度n为偶数时候,次数为奇数的有偶数个,按照上面说的搞就好了. n为奇数时, ...

  8. POJ 3057 Evacuation(二分匹配)

    分析: 这是一个时间和门的二元组(t,d)和人p匹配的问题,当我们固定d0时,(t,d0)匹配的人数和t具有单调性. t增加看成是多增加了边就行了,所以bfs处理出p到每个d的最短时间,然后把(t,d ...

  9. 如何从github上拉取项目中的指定目录

    2010开始,对于GitHub上的每一个Git版本库,现在都可以用SVN命令进行操作,而svn命令则是支持部分检出的. 方法如下: 例如我想下载我的nginxinc/kubernetes-ingres ...

  10. 《剑指offer》【调整数组顺序使奇数位于偶数前面】(python版)

    题目描述: 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于位于数组的后半部分 思路: 我认真看了一下,题目应该是要求在原地调整,所以这里不能再 ...