Building a Space Station POJ - 2031

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834 题意:给出三维的球,四个参数分别为xyz坐标和球的半径,问最少建多长的路可以使得所有的连通起来
思路:遍历每一颗球到其他所有球的长度,之后跑最小生成树
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
const int maxn = 1e5+;
const ll mod = 1e9+; struct node{
double x,y,z,r;
}a[]; double dis[][];
double mincost[];
bool vis[];
int n;
double prim()
{
for(int i=;i<n;i++)
{
mincost[i] = INF;
vis[i] = false;
}
mincost[]=;
double res = ;
while(true)
{
int v = -;
for(int u=;u<n;u++)
if(!vis[u] && (v == - || mincost[u] < mincost[v]))
v = u;
if(v == -)
break;
vis[v] = true;
res += mincost[v];
for(int u=;u<n;u++)
mincost[u] = min(mincost[u],dis[v][u]);
}
return res;
}
int main()
{ while(scanf("%d",&n) && n)
{
for(int i=;i<n;i++)
{
scanf("%lf %lf %lf %lf",&a[i].x,&a[i].y,&a[i].z,&a[i].r);
}
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
double s=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y)+(a[i].z-a[j].z)*(a[i].z-a[j].z))-a[i].r-a[j].r;
if(s<=)
dis[i][j]=;
else
dis[i][j]=s;
}
}
double ans = prim();
printf("%.3f\n",ans);
}
}
												

Building a Space Station POJ - 2031的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. C - Building a Space Station - poj 2031

    空间站是有一些球状的房间组成的,现在有一些房间但是没有相互连接,你需要设计一些走廊使他们都相通,当然,有些房间可能会有重合(很神奇的样子,重合距离是0),你需要设计出来最短的走廊使所有的点都连接. 分 ...

  4. Building a Space Station POJ - 2031 三维最小生成树,其实就是板子题

    #include<iostream> #include<cmath> #include<algorithm> #include<cstdio> usin ...

  5. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  9. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

随机推荐

  1. 文本编辑简体中文专业版EmEditor Professional v12.0.8(12/27/2012更新)姓名+注册码

    这是一个简单好用的文本编辑器,支持多种配置,自定义颜色.字体.工具栏.快捷键设置,可以调整行距,避免中文排列过于紧密,具有选择文本列块的功能(按ALT 键拖动鼠标),并允许无限撤消.重做,总之功能多多 ...

  2. Java使用Zxing生成、解析二维码工具类

    Zxing是Google提供的关于条码(一维码.二维码)的解析工具,提供了二维码的生成与解析的方法. 1.二维码的生成 (1).将Zxing-core.jar 包加入到classpath下. (2). ...

  3. Quartz 定时器,同时运用多个定时器

    效果:每天执行两个定时器,两个定时器不相关联.jar版本Quartz 2.2.3 Java工程结构图  jar 包下载: 链接: https://pan.baidu.com/s/1-7dh620k9P ...

  4. Ubuntu 16.04 远程登入root 用户

    安装 open ssh: sudo apt-get install openssh-server   修改 root 密码 sudo passwd root   以其他账户登录,通过 sudo nan ...

  5. linux 链接的使用 创建和删除符号连接

    1 . 使用方式 :ln [option] source_file dist_file                     -f 建立时,将同档案名删除.                     ...

  6. ASP.NET MVC网站学习问题积累(一)

    最近工作压力比较大,不得已开始自学C#.同时网站开发业务开展迫在眉睫,只能先从ASP.NET学起.回想一下,连C#和ASP.NET的关系都没有明白,就被赶鸭子上架了...我觉得这将是我工作以来最具有戏 ...

  7. Spring,FetchType.LAZY和FetchType.EAGER什么区别?

    1.FetchType.LAZY:懒加载,加载一个实体时,定义懒加载的属性不会马上从数据库中加载. 2.FetchType.EAGER:急加载,加载一个实体时,定义急加载的属性会立即从数据库中加载. ...

  8. POJ-3565 Ants---KM算法+slack优化

    题目链接: https://vjudge.net/problem/POJ-3565 题目大意: 在坐标系中有N只蚂蚁,N棵苹果树,给你蚂蚁和苹果树的坐标.让每只蚂蚁去一棵苹果树, 一棵苹果树对应一只蚂 ...

  9. 管理员必备的几个Linux系统监控工具

    需要监控Linux服务器系统性能吗?尝试下面这些系统内置或附件的工具吧.大多数Linux发行版本都装备了大量的监控工具.这些工具提供了能用作取得相关信息和系统活动的量度指标.你能使用这些工具发现造成性 ...

  10. github不能加载css、js解决办法

    很奇怪,上午在公司还能正常访问github,晚点访问却有问题,页面样式明显错乱. 在FireFox下用F12开发者工具一看,有2条css和2条js 404 了,猜想应该是github的DNS被GFW污 ...