counting the numbers
题意:
给定$a,b,c$ ,求解满足 $1 \leq m \leq b, 1 \leq n \leq c, a | mn$ 的 $(m,n)$ 数对个数。
$a \leq INTMAX$, $b \leq LONGLONGMAX$
解法
原问题相当于求解 $mn \ mod \ a \equiv 0$ 的数对个数。
$(m \ mod \ a) n \ mod \ a \equiv 0$
这样$m$ ,实际有效的是 $m \ mod \ a$。
这样我们可以将原问题中的 $m$ 分为 $[\frac{b}{a}]$ 段 $m \equiv 1\ to \ a (mod \ a)$,
与一段 $m \equiv 1 \ to(b \mod \ a) (mod \ a)$
考虑求解 $m ∈ [1,t]$ 的 $(m,n)$ 数对个数 $F(t)$。
这样有$$ans = [b/a]F(a) + F(b \ mod \ a)$$
$$F(t) = \sum_{m=1}^t { [\frac{c}{ \frac{a}{(a,m)} }] }$$
记 $d = (m,a)$
$$F(t) = \sum_{d|a}{ [\frac{c}{ \frac{a}{d} }] (the\ cnt\ of\ m\ that (m,a) = d) }$$
$$F(t) = \sum_{d|a}{ [\frac{c}{ \frac{a}{d} }] (the\ cnt\ of\ m\ that (\frac{m}{d},\frac{a}{d}) = 1) }$$
$$F(t) = \sum_{d|a}{ [\frac{c}{ \frac{a}{d} }] (the\ cnt\ of\ i\ that (i,\frac{a}{d}) = 1 and i \leq [\frac{t}{d}]) }$$
后者可以通过容斥$O(\sqrt {\frac{a}{d}})$ 求
#include <bits/stdc++.h> #define LL long long
#define bit(x) (1<<(x))
#define P 1000000007LL using namespace std; LL b,c;
int a,num[]; LL calc(int n,int m) //1~n中和 m互质的数字个数
{
if(n==) return 0LL;
int tmp = m;
int tot = ;
for(int i=;i*(LL)i<=(LL)m;i++)
{
if(tmp%i==)
{
while(tmp%i==) tmp/=i;
num[++tot] = i;
}
}
if(tmp>) num[++tot] = tmp;
LL ans = ;
for(int S=;S<(<<tot);S++)
{
int tmp = ,k = ;
for(int i=;i<tot;i++) if(bit(i)&S) tmp *= num[i+], k = -k;
ans += k * (n/tmp);
}
return ans % P;
} LL calc(int t)
{
if(t == ) return 0LL;
LL ans = ;
for(int d=;d*(LL)d<=(LL)a;d++)
if(a%d==)
{
int tmpd = d;
ans += (c / (a/tmpd)) % P * calc(t/tmpd,a/tmpd) % P;
if(ans >= P) ans -= P;
if(d*d != a)
{
tmpd = a/d;
ans += (c / (a/tmpd)) % P * calc(t/tmpd,a/tmpd) % P;
if(ans >= P) ans -= P;
}
}
return ans;
} int main()
{
while(cin>>a>>b>>c)
{
LL ans = (b/a)%P * calc(a)%P + calc(b%(LL)a)%P;
cout << ans % P << endl;
}
return ;
}
counting the numbers的更多相关文章
- HDU 4349 Xiao Ming's Hope lucas定理
Xiao Ming's Hope Time Limit:1000MS Memory Limit:32768KB Description Xiao Ming likes counting nu ...
- Lintcode: Partition Array
Given an array "nums" of integers and an int "k", Partition the array (i.e move ...
- Hdu4349 Xiao Ming's Hope
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- Partition Array
Given an array nums of integers and an int k, partition the array (i.e move the elements in "nu ...
- hdu 4349 Xiao Ming's Hope 规律
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- Weekly Contest 128
1012. Complement of Base 10 Integer Every non-negative integer N has a binary representation. For e ...
- HDU 4349——Xiao Ming's Hope——————【Lucas定理】
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4349 Xiao Ming's Hope 找规律
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/ ...
- lintcode刷题笔记(一)
最近开始刷lintcode,记录下自己的答案,数字即为lintcode题目号,语言为python3,坚持日拱一卒吧... (一). 回文字符窜问题(Palindrome problem) 627. L ...
随机推荐
- Apcahe Shiro学习笔记(二):通过JDBC进行权限控制
一.概述: 官方对Realm(领域)的描述:https://www.infoq.com/articles/apache-shiro 其功能本质上是一个安全特定的DAO,用于链接数据持久层(任何形式的都 ...
- PHP 7.1.5编译安装
1. 安装基础组件 yum install -y libxml2 libxml2-devel bzip2 bzip2-devel curl-devel libjpeg libjpeg-devel li ...
- beyond compare添加右键快捷方式
如果安装beyond compare后,右键不能出现比较选项,可以通过设置 beyond compare完成. 选择 工具->选项,在资源管理器整合下面,有一个在资源管理器关联菜单中显示beyo ...
- SQL Cursor生命周期
阅读导航 1 Cursor Step 1.1 Create cursor 1.2 Parse statement 1.3 descript and define 1.4 Bind variable ...
- centos6.4中文输入法安装和切换(转载)
1.用root登录,或者切换到root账户(su root): 2.yum install "@Chinese Support"; 3.exit: 4.System→prefere ...
- 代写GIS系统
代写GIS系统,熟悉arcgis,leaflet ,百度地图等api.可以提供系统代写,技术咨询等
- yii框架之gii创建数据表相应的model类
一.首先是在数据库中建立project须要的表: 二.然后,配置相应文件: 在project文件夹下yiiProject\protected\config\main.php.在50行定义了db应用组件 ...
- 设置netbeans文件编码格式
在项目ecmall上右键 选择属性,然后在项目属性里设置
- WF中的Bookmark
最近在学习WF, 把自己的一些学习心得放上来 Bookmark允许你以事件驱动的方式与一个Workflow内的Activity进行交互. 如果把启动一个workflow比做开始读一本书, 在Workf ...
- 配置tomcat,使访问项目时候无项目名
首先在盘符下新建一个文件夹(web),该文件夹存贮运行的项目用. 然后编辑config文件夹下的server.xml文件: 在<Host>标签中添加配置: <Context path ...