How to Create a Provisioning Profile for iPhone
If you're making iPhone and iPad apps, there are some processes you must work through to go from development to testing on actual Apple devices. A Provisioning Profile is necessary in order to install development applications on development iPhones and iPads. We'll show you how to do it.
Steps
1Log in to the iOS Development Center at https://developer.apple.com/devcenter/ios/index.action
Ad
2Enter the Developer Program Portal. Click on the "iOS Developer Program Portal" on the right side of the page, under "iOS Developer Program".
- Note that if you are not a registered Apple iOS Developer, you will need to sign up for this program before proceeding so that you can run a simulation on your IOS device. Currently the development program is currently a $99 annual fee to join.
3Click on Provisioning on the left side of the page. Once you have logged into the iOS Provisioning portal, you can do this.
4Click on the "New Profile" button.
5Enter a profile name. Select the certificates and devices you would like to associate with this profile, then choose an app ID.
6Click submit. This will generate your profile.
Downloading a Development Provisioning Profile
1Log into the iOS Provisioning Portal. Once logged in, click Provisioning on the left-hand side.
2Select the appropriate tab. Click either the Development or the Distribution tab to show your profiles.
3Download the profile. Locate the desired Provisioning Profile, and in the Actions column, click the Download button.
How to Create a Provisioning Profile for iPhone的更多相关文章
- xcode运行demo报错:Failed to create provisioning profile.cannot be registered to your development team
问题:网上下载运行demo,出现Failed to create provisioning profile.cannot be registered to your development team此 ...
- Iphone CodeSign error: no provisioning profile at path 错
今天在退房手续,变化了profile,当再次进行整理编译项目时.就出现了这个问题,在xCode 6 开发环境下出现了, 出现这个错误提示Code Sign error: Provisioning pr ...
- How to create your iOS team provisioning profile ?
From Apple Developer: https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppS ...
- [转载]iOS Provisioning Profile(Certificate)与Code Signing详解
原文:http://blog.csdn.net/phunxm/article/details/42685597 引言 关于开发证书配置(Certificates & Identifiers & ...
- iOS Provisioning Profile(Certificate)与Code Signing详解
引言 关于开发证书配置(Certificates & Identifiers & Provisioning Profiles),相信做 iOS 开发的同学没少被折腾.对于一个 iOS ...
- 【转】iOS Provisioning Profile(Certificate)与Code Signing详解 -- 待看
原文网址:http://blog.sina.com.cn/s/blog_82c8198f0102vy4j.html 引言 关于开发证书配置(Certificates & Identifiers ...
- 【转】 iOS Provisioning Profile(Certificate)与Code Signing详解
原文:http://blog.csdn.net/phunxm/article/details/42685597 引言 关于开发证书配置(Certificates & Identifiers & ...
- iOS 真机测试时报错:Provisioning profile "iOS Team Provisioning Profile: XXX” doesn't include the currently selected device “XXX”.
这几天因工作需要,去给客户演示iOS项目打包的过程.之前演示都是顺利的,但后来客户自己操作时打电话说遇到了问题,出现报错. 就过去看了一下,发现一个很陌生的错误提示: The operation co ...
- iOS 中的Certificate,Provisioning Profile 等在code singing中用到的信息
注册apple id 有1年多了,这些概念还是模模糊糊的,决定在这里总结一下. 请参阅官方文档 App Distribution Guide code singing的作用如下: Code signi ...
随机推荐
- Linux中同步与异步、阻塞与非阻塞概念以及五种IO模型
1.概念剖析 相信很多从事linux后台开发工作的都接触过同步&异步.阻塞&非阻塞这样的概念,也相信都曾经产生过误解,比如认为同步就是阻塞.异步就是非阻塞,下面我们先剖析下这几个概念分 ...
- 合肥工业大学宣城校区大学生创新创业训练项目申报书:“基于Spark平台的人工智能知识的知识图谱构建”
- Java类编译、加载、和执行
https://www.cnblogs.com/fefjay/p/6305499.html
- 大数据学习——sparkSql对接hive
1. 安装mysql 2. 上传.解压.重命名 2.1. 上传 在随便一台有hadoop环境的机器上上传安装文件 su - hadoop rz –y 2.2. 解压 解压缩:apache- ...
- python - work5 - 类与对象 - 拓展题
''' 5:购物车类,包含的功能如下,请自行设计这个类以及类里面的方法:1)用户输入工资后,打印商品列表(商品列表自行设计展示模式)2)允许用户根据商品编号去选择商品3)用户选择商品后,检查余额是否足 ...
- 九度oj 题目1080:进制转换
题目描述: 将M进制的数X转换为N进制的数输出. 输入: 输入的第一行包括两个整数:M和N(2<=M,N<=36). 下面的一行输入一个数X,X是M进制的数,现在要求你将M进制的数X转换成 ...
- Hibernate框架简述(转)
转自:http://www.cnblogs.com/eflylab/archive/2007/01/09/615338.html Hibernate的核心组件在基于MVC设计模式的JAVA WEB应用 ...
- SQLSERVER中文日期varchar格式转换成datetime格式
因项目要求,需要把SQLSERVER一张客户表的数据同步到oracle库的一张客户表,但两张表有时间类型不一致,需要进行转换 如下: SELECT CUSTCODE,AgreementValidity ...
- LibreOJ2085 - 「NOI2016」循环之美
Portal Description 给出\(n,m(n,m\leq10^9)\)和\(k(k\leq2000)\),求在\(k\)进制下,有多少个数值不同的纯循环小数可以表示成\(\dfrac{x} ...
- 刷题总结——树的同构(bzoj4337 树上hash)
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...