Smith Numbers

Background

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University , noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum
of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

The sum of all digits of the telephone number is4+9+3+7+7+7+5=42, and the sum of the digits of its prime factors is equally3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this type of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number and he excluded them from the definition.

Problem

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However, Wilansky was not able
to give a Smith number which was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers which are larger than 4937775.

Input

The input consists of several test cases, the number of which you are given in the first line of the input.

Each test case consists of one line containing a single positive integer smaller than 109.

Output

For every input value n, you are to compute the smallest Smith number which is larger than
nand print each number on a single line. You can assume that such a number exists.

Sample Input

1
4937774

Sample Output

4937775
题意:假设一个合数的各个数字之和等于该数全部素因子的各个数字之和。则称这个数是Smith数。给出一个n,求大于n的最小的Smith数是多少。
分析:对要推断的数进行素因子分解就可以。由于所求数小于 10^9,若一个数是合数,则其素因子至少有一个小于或等于sqrt(10^9),则可先把2 - sqrt(10^9) 之间的素数保存起来。 
#include<stdio.h>
#include<string.h>
const int MAXN = 100005;
int vis[MAXN], prime[10000], num; void get_prime()
{
num = 0;
memset(vis, 0, sizeof(vis));
vis[0] = vis[1] = 1;
for(int i = 2; i < MAXN; i++)
{
if(!vis[i])
{
prime[num++] = i;
for(int j = i + i; j < MAXN; j += i)
vis[j] = 1;
}
}
} bool is_prime(int x)
{
if(x == 0 || x == 1) return false;
if(x == 2) return true;
if(x % 2 == 0) return false;
for(int i = 3; i * i <= x; i += 2)
if(x % i == 0)
return false;
return true;
} int sum(int x)
{
int res = 0;
while(x)
{
res += x % 10;
x /= 10;
}
return res;
} int main()
{
get_prime();
int n, t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = n + 1; ; i++)
{
if(is_prime(i))
continue;
int s = 0, tmp = i, tmpsum = sum(i);
for(int j = 0; j < num; j++)
{
if(tmp % prime[j] == 0)
{
while(tmp % prime[j] == 0)
{
s += sum(prime[j]);
tmp /= prime[j];
}
if(is_prime(tmp))
{
s += sum(tmp);
break;
}
}
}
if(tmpsum == s)
{
printf("%d\n",i);
break;
}
}
}
return 0;
}

UVA 10042 Smith Numbers(数论)的更多相关文章

  1. UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)

      Carmichael Numbers  An important topic nowadays in computer science is cryptography. Some people e ...

  2. Uva - 12050 Palindrome Numbers【数论】

    题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...

  3. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  4. UVa 10006 - Carmichael Numbers

    UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...

  5. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  6. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  7. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  8. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  9. UVA.136 Ugly Numbers (优先队列)

    UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...

随机推荐

  1. Dropbox面向第三方开发者推出全新的Datastore API

    Dropbox今天推出了全新的高级的同步API,开发者可以使用Dropbox的技术同步跨设备app的数据. Datastore API在现有的Dropbox Sync API基础上进行了扩展,允许开发 ...

  2. 洛谷P4364 [九省联考2018]IIIDX 【线段树】

    题目 [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在 ,他在世界知名游戏公司KONMAI内工作,离他的梦想也越来越近了.这款 ...

  3. 96. Unique Binary Search Trees(I 和 II)

    Given n, how many structurally unique BST's (binary search trees) that store values 1-n? For example ...

  4. 升级springboot 2.x 踩过的坑——跨域导致session问题

    目前IT界主流前后端分离,但是在分离过程中一定会存在跨域的问题. 什么是跨域? 是指浏览器从一个域名的网页去请求另一个域名的资源时,域名.端口.协议任一不同,都是跨域. 做过web后台的童鞋都知道,跨 ...

  5. C#递归删除进程及其子进程

    /// <summary> /// 结束进程和相关的子进程 /// </summary> /// <param name="pid">需要结束的 ...

  6. c++函数学习-关于c++函数的林林总总

    本文是我在学习c++过程中的一些思考和总结,主要是c++中关于函数的林林总总.欢迎大家批评和指正,共同学习. os version: ubuntu 12.04 LTS gcc version: gcc ...

  7. STL学习笔记(七) 程序中使用STL

    条款43:算法调用优先于手写循环 class Widget { public: bool test(); }; vector<Widget> vec; 算法调用: for_each(vec ...

  8. 洛谷 P1131 选择客栈

    题目描述 丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每家咖啡店均 ...

  9. JAVA特性面试题:

    1.简要介绍java程序的健壮性. 答:JAVA程序会在编译和运行的时候自动的检测可能出现的错误,而且它是一种强类型语言,对于类型的检查很严格,而且它的垃圾回收机制也有效的避免了内存的泄漏. 2.为什 ...

  10. PHP文件函数

    PHP文件函数 函数 描述 PHPbasename() 返回路径中的文件名部分. 3chgrp() 改变文件组. 3chmod() 改变文件模式. 3chown() 改变文件所有者. 3clearst ...