UVA 10042 Smith Numbers(数论)
Smith Numbers
Background
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University , noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum
of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

The sum of all digits of the telephone number is4+9+3+7+7+7+5=42, and the sum of the digits of its prime factors is equally3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this type of numbers after his brother-in-law: Smith numbers.
As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number and he excluded them from the definition.
Problem
Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However, Wilansky was not able
to give a Smith number which was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers which are larger than 4937775.
Input
The input consists of several test cases, the number of which you are given in the first line of the input.
Each test case consists of one line containing a single positive integer smaller than 109.
Output
For every input value n, you are to compute the smallest Smith number which is larger than
nand print each number on a single line. You can assume that such a number exists.
Sample Input
1
4937774
Sample Output
4937775
题意:假设一个合数的各个数字之和等于该数全部素因子的各个数字之和。则称这个数是Smith数。给出一个n,求大于n的最小的Smith数是多少。
分析:对要推断的数进行素因子分解就可以。由于所求数小于 10^9,若一个数是合数,则其素因子至少有一个小于或等于sqrt(10^9),则可先把2 - sqrt(10^9) 之间的素数保存起来。
#include<stdio.h>
#include<string.h>
const int MAXN = 100005;
int vis[MAXN], prime[10000], num; void get_prime()
{
num = 0;
memset(vis, 0, sizeof(vis));
vis[0] = vis[1] = 1;
for(int i = 2; i < MAXN; i++)
{
if(!vis[i])
{
prime[num++] = i;
for(int j = i + i; j < MAXN; j += i)
vis[j] = 1;
}
}
} bool is_prime(int x)
{
if(x == 0 || x == 1) return false;
if(x == 2) return true;
if(x % 2 == 0) return false;
for(int i = 3; i * i <= x; i += 2)
if(x % i == 0)
return false;
return true;
} int sum(int x)
{
int res = 0;
while(x)
{
res += x % 10;
x /= 10;
}
return res;
} int main()
{
get_prime();
int n, t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = n + 1; ; i++)
{
if(is_prime(i))
continue;
int s = 0, tmp = i, tmpsum = sum(i);
for(int j = 0; j < num; j++)
{
if(tmp % prime[j] == 0)
{
while(tmp % prime[j] == 0)
{
s += sum(prime[j]);
tmp /= prime[j];
}
if(is_prime(tmp))
{
s += sum(tmp);
break;
}
}
}
if(tmpsum == s)
{
printf("%d\n",i);
break;
}
}
}
return 0;
}
UVA 10042 Smith Numbers(数论)的更多相关文章
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- POJ 1142 Smith Numbers(史密斯数)
Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- Smith Numbers - PC110706
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- Smith Numbers POJ - 1142 (暴力+分治)
题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...
- POJ 1142:Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
随机推荐
- 【bzoj3207】花神的嘲讽计划Ⅰ Hash+STL-map+莫队算法
题目描述 背景 花神是神,一大癖好就是嘲讽大J,举例如下: “哎你傻不傻的![hqz:大笨J]” “这道题又被J屎过了!!” “J这程序怎么跑这么快!J要逆袭了!” …… 描述 这一天DJ在给吾等众蒟 ...
- ubuntu安装mysql<服务器>
服务器 阿里云服务器Ubuntu安装mysql 2014-08-22 21:52 | coding云 | 7315次阅读 | 11条评论 这里首先吐槽一下阿里云,我作为公司的唯一懂服务器架设的 ...
- HDU——1286找新朋友(欧拉函数+质数打表)
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU——1799循环多少次(杨辉三角/动态规划/C(m,n)组合数)
循环多少次? Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- python解析yaml文件
YAML语法规则: http://www.ibm.com/developerworks/cn/xml/x-cn-yamlintro/ 下载PyYAML: http://www.yaml.org/ 解压 ...
- 主机ping不通虚拟机,但是虚拟机能ping通主机
一.虚拟机网络连接方式选择Nat 二. 关闭Linux防火墙命令:service iptables stop / service firewalld stop 查看Linux防火墙状态命令:servi ...
- 转 Python常见数据结构整理
http://www.cnblogs.com/jeffwongishandsome/archive/2012/08/05/2623660.html Python常见数据结构整理 Python中常见的数 ...
- Scrapy学习-16-动态网页技术
Selenium浏览器自动化测试框架 简介 Selenium 是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样. 支持的浏览器包括IE(7, 8, ...
- Purpose of XMLString::transcode
原文地址http://stackoverflow.com/questions/9826518/purpose-of-xmlstringtranscode I don't seem to underst ...
- WKWebView与js交互中产生的内存泄漏
最近开发中突然发现富文本帖子详情内存没有释放掉,找了好久问题都没找到,终于今天发现了问题,先上一点代码片段 WKWebViewConfiguration *configuration = [[WKWe ...