Smith Numbers

Background

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University , noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum
of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

The sum of all digits of the telephone number is4+9+3+7+7+7+5=42, and the sum of the digits of its prime factors is equally3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this type of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number and he excluded them from the definition.

Problem

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However, Wilansky was not able
to give a Smith number which was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers which are larger than 4937775.

Input

The input consists of several test cases, the number of which you are given in the first line of the input.

Each test case consists of one line containing a single positive integer smaller than 109.

Output

For every input value n, you are to compute the smallest Smith number which is larger than
nand print each number on a single line. You can assume that such a number exists.

Sample Input

1
4937774

Sample Output

4937775
题意:假设一个合数的各个数字之和等于该数全部素因子的各个数字之和。则称这个数是Smith数。给出一个n,求大于n的最小的Smith数是多少。
分析:对要推断的数进行素因子分解就可以。由于所求数小于 10^9,若一个数是合数,则其素因子至少有一个小于或等于sqrt(10^9),则可先把2 - sqrt(10^9) 之间的素数保存起来。 
#include<stdio.h>
#include<string.h>
const int MAXN = 100005;
int vis[MAXN], prime[10000], num; void get_prime()
{
num = 0;
memset(vis, 0, sizeof(vis));
vis[0] = vis[1] = 1;
for(int i = 2; i < MAXN; i++)
{
if(!vis[i])
{
prime[num++] = i;
for(int j = i + i; j < MAXN; j += i)
vis[j] = 1;
}
}
} bool is_prime(int x)
{
if(x == 0 || x == 1) return false;
if(x == 2) return true;
if(x % 2 == 0) return false;
for(int i = 3; i * i <= x; i += 2)
if(x % i == 0)
return false;
return true;
} int sum(int x)
{
int res = 0;
while(x)
{
res += x % 10;
x /= 10;
}
return res;
} int main()
{
get_prime();
int n, t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = n + 1; ; i++)
{
if(is_prime(i))
continue;
int s = 0, tmp = i, tmpsum = sum(i);
for(int j = 0; j < num; j++)
{
if(tmp % prime[j] == 0)
{
while(tmp % prime[j] == 0)
{
s += sum(prime[j]);
tmp /= prime[j];
}
if(is_prime(tmp))
{
s += sum(tmp);
break;
}
}
}
if(tmpsum == s)
{
printf("%d\n",i);
break;
}
}
}
return 0;
}

UVA 10042 Smith Numbers(数论)的更多相关文章

  1. UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)

      Carmichael Numbers  An important topic nowadays in computer science is cryptography. Some people e ...

  2. Uva - 12050 Palindrome Numbers【数论】

    题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...

  3. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  4. UVa 10006 - Carmichael Numbers

    UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...

  5. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  6. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  7. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  8. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  9. UVA.136 Ugly Numbers (优先队列)

    UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...

随机推荐

  1. ie,360浏览器出现无法打开网页(包括本地html)的解决方法

    有一天,编写网页照例打开chrome,ie,360等浏览器,发现ie,360均无法打开本地网页,输入百度,也无法打开,从没遇到过这种情况,通过百度,找了几种方法,没解决, 后来,看到有一种原因可能是浏 ...

  2. 刷题总结——array(ssoj)

    题目: 题目描述 给定 2 个正整数序列 A1, A2,序列长度分别为 L1, L2.你可以进行以下的一次操作:1. 选择两个数 K1,K2(1≤K1≤L1, 1≤K2≤L2):2. 移去 A1 中最 ...

  3. BZOJ 2501: [usaco2010 Oct]Soda Machine 离散+差分

    [usaco2010 Oct]Soda Machine Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 266  Solved: 182[Submit][ ...

  4. spoj 7001 Visible Lattice Points莫比乌斯反演

    Visible Lattice Points Time Limit:7000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  5. 快速比對 修改的檔案 使用 Beyond Compare Filters & git & sed

    修改 code 後, 想使用 beyond compare 比對 修改前後的 code (有一包未修改的 code), 若 code 很大, 全部比完,需要花很多時間, Command 此時可以使用 ...

  6. Word Ladder系列

    1.Word Ladder 问题描述: 给两个word(beginWord和endWord)和一个字典word list,找出从beginWord到endWord之间的长度最长的一个序列,条件: 1. ...

  7. React-Native解决ListView 在Android手机上无吸顶效果

    stickySectionHeadersEnabled={true} stickyHeaderIndices={[0]}

  8. HDU 5726 GCD(ST&RMQ)

    题目链接 GCD 先ST倍增预处理,f[i][j]表示从i开始(包含第i个数)的连续2^j个数的最大公约数. 这样就可以在O(1)内询问得到a[l]到a[r]之间的所有数的最大公约数的值. 然后对于每 ...

  9. 树讲解——牧场行走( lca )

    大视野   1602: [Usaco2008 Oct]牧场行走 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1947  Solved: 1021[Sub ...

  10. ML | Naive Bayes

    what's xxx In machine learning, naive Bayes classifiers are a family of simple probabilistic classif ...