UVA 10042 Smith Numbers(数论)
Smith Numbers
Background
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University , noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum
of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

The sum of all digits of the telephone number is4+9+3+7+7+7+5=42, and the sum of the digits of its prime factors is equally3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this type of numbers after his brother-in-law: Smith numbers.
As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number and he excluded them from the definition.
Problem
Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However, Wilansky was not able
to give a Smith number which was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers which are larger than 4937775.
Input
The input consists of several test cases, the number of which you are given in the first line of the input.
Each test case consists of one line containing a single positive integer smaller than 109.
Output
For every input value n, you are to compute the smallest Smith number which is larger than
nand print each number on a single line. You can assume that such a number exists.
Sample Input
1
4937774
Sample Output
4937775
题意:假设一个合数的各个数字之和等于该数全部素因子的各个数字之和。则称这个数是Smith数。给出一个n,求大于n的最小的Smith数是多少。
分析:对要推断的数进行素因子分解就可以。由于所求数小于 10^9,若一个数是合数,则其素因子至少有一个小于或等于sqrt(10^9),则可先把2 - sqrt(10^9) 之间的素数保存起来。
#include<stdio.h>
#include<string.h>
const int MAXN = 100005;
int vis[MAXN], prime[10000], num; void get_prime()
{
num = 0;
memset(vis, 0, sizeof(vis));
vis[0] = vis[1] = 1;
for(int i = 2; i < MAXN; i++)
{
if(!vis[i])
{
prime[num++] = i;
for(int j = i + i; j < MAXN; j += i)
vis[j] = 1;
}
}
} bool is_prime(int x)
{
if(x == 0 || x == 1) return false;
if(x == 2) return true;
if(x % 2 == 0) return false;
for(int i = 3; i * i <= x; i += 2)
if(x % i == 0)
return false;
return true;
} int sum(int x)
{
int res = 0;
while(x)
{
res += x % 10;
x /= 10;
}
return res;
} int main()
{
get_prime();
int n, t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = n + 1; ; i++)
{
if(is_prime(i))
continue;
int s = 0, tmp = i, tmpsum = sum(i);
for(int j = 0; j < num; j++)
{
if(tmp % prime[j] == 0)
{
while(tmp % prime[j] == 0)
{
s += sum(prime[j]);
tmp /= prime[j];
}
if(is_prime(tmp))
{
s += sum(tmp);
break;
}
}
}
if(tmpsum == s)
{
printf("%d\n",i);
break;
}
}
}
return 0;
}
UVA 10042 Smith Numbers(数论)的更多相关文章
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- POJ 1142 Smith Numbers(史密斯数)
Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- Smith Numbers - PC110706
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- Smith Numbers POJ - 1142 (暴力+分治)
题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...
- POJ 1142:Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
随机推荐
- 【bzoj2795】[Poi2012]A Horrible Poem Hash+分解质因数
题目描述 给出一个由小写英文字母组成的字符串S,再给出q个询问,要求回答S某个子串的最短循环节.如果字符串B是字符串A的循环节,那么A可以由B重复若干次得到. 输入 第一行一个正整数n (n<= ...
- CS231n笔记 Lecture 2 Image Classification pipeline
距离度量\(L_1\) 和\(L_2\)的区别 一些感性的认识,\(L_1\)可能更适合一些结构化数据,即每个维度是有特别含义的,如雇员的年龄.工资水平等等:如果只是一个一般化的向量,\(L_2\)可 ...
- HDU-1529 Cashier Employment
据网上说这是到差分约束四星题... 可我觉得难吗? 比推DP方程容易... 两种约束方式,当然实现到程序就变成六种了... #include <cstdio> #include <c ...
- iOS自定义Navbar
1.修改Navigationbar navigationBar其实有三个子视图,leftBarButtonItem,rightBarButtonItem,以及titleView. 1.1 方法一:a ...
- Activation(hdu 4089)
题目:仙5的激活序列.有以下4种情况: 1.注册失败,但是不影响队列顺序 ,概率为p1 2.连接失败,队首的人排到队尾,概率为p2 3.注册成功,队首离开队列,概率为p3 4.服务器崩溃,激活停止,概 ...
- poj 1418 Viva Confetti
Viva Confetti Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1025 Accepted: 422 Desc ...
- OpenJudge 东方14ACM小组 / 20170123 06:Challenge 3
总时间限制: 10000ms 单个测试点时间限制: 1000ms 内存限制: 262144kB 描述 给一个长为N的数列,有M次操作,每次操作是以下两种之一: (1)修改数列中的一个数 (2)求 ...
- 在 NetBeans 中开发一般 Java 应用程序时配置 Allatori 进行代码混淆
要在 NetBeans 中开发一般 Java 应用程序时利用 Allatori 进行代码混淆,设置比 IntelliJ IDEA 稍微简单一点,首先在 NetBeans 项目所在硬盘目录内创建一个名为 ...
- LeetCode OJ——Word Ladder
http://oj.leetcode.com/problems/word-ladder/ 图的最短路径问题,可以用最短路径算法,也可以深搜,也可以广搜. 深搜版本: 第一次写的时候,把sum和visi ...
- AC日记——总分 Score Inflation 洛谷 P2722
题目背景 学生在我们USACO的竞赛中的得分越多我们越高兴. 我们试着设计我们的竞赛以便人们能尽可能的多得分,这需要你的帮助 题目描述 我们可以从几个种类中选取竞赛的题目,这里的一个"种类& ...