Description

 

Problem B: Myacm Triangles

Problem B: Myacm Triangles

Source file: triangle.{c, cpp, java, pas}
Input file: triangle.in
Output file: triangle.out

There has been considerable archeological work on the ancient Myacm culture. Many artifacts have been found in what have been called power fields: a fairly small area, less than 100 meters square where there are from four to fifteen tall monuments with crystals on top. Such an area is mapped out above. Most of the artifacts discovered have come from inside a triangular area between just three of the monuments, now called the power triangle. After considerable analysis archeologists agree how this triangle is selected from all the triangles with three monuments as vertices: it is the triangle with the largest possible area that does not contain any other monuments inside the triangle or on an edge of the triangle. Each field contains only one such triangle.

Archeological teams are continuing to find more power fields. They would like to automate the task of locating the power triangles in power fields. Write a program that takes the positions of the monuments in any number of power fields as input and determines the power triangle for each power field.

A useful formula: the area of a triangle with vertices (x1, y1), (x2, y2), and (x3, y3) is the absolute value of

0.5 × [(    y3-y1)(    x2-x1)     - (    y2-y1)(    x3-x1)].

For each power field there are several lines of data. The first line is the number of monuments: at least 4, and at most 15. For each monument there is a data line that starts with a one character label for the monument and is followed by the coordinates of the monument, which are nonnegative integers less than 100. The first label is A, and the next is B, and so on.

There is at least one such power field described. The end of input is indicated by a 0 for the number of monuments. The first sample data below corresponds to the diagram in the problem.

For each power field there is one line of output. It contains the three labels of the vertices of the power triangle, listed in increasing alphabetical order, with no spaces.

Example input:

6
A 1 0
B 4 0
C 0 3
D 1 3
E 4 4
F 0 6
4
A 0 0
B 1 0
C 99 0
D 99 99
0

Example output:

BEF
BCD

这个题目关键在于如何判断某个点是否在三角形中,如果解决了直接暴力枚举即可。

要判断某个点是否在三角形中,此处采用了向量积:

只要这个点与三角形三个点的连线是顺时针或逆时针依次排列,那么这个点便在三角形中,于是只要判断,相邻两个连线的数量积是否恒为正数或负数。

代码:

  1 #include <iostream>
2 #include <cstdio>
3 #include <cstdlib>
4 #include <cstring>
5 #include <cmath>
6 #include <algorithm>
7 #include <set>
8 #include <map>
9 #include <vector>
10 #include <queue>
11 #include <string>
12 #define inf 0x3fffffff
13 #define eps 1e-10
14
15 using namespace std;
16
17 struct point
18 {
19 int x, y;
20
21 double xj(point a, point b)
22 {
23 double ans;
24 ans = (b.y-y) * (a.x-x) - (a.y-y) * (b.x-x);
25 return ans;
26 }
27
28 double area(point a, point b)
29 {
30 return fabs(xj(a, b)) / 2;
31 }
32
33 bool in(point a, point b, point c)
34 {
35 double i, j, k;
36 i = xj(a, b);
37 j = xj(b, c);
38 k = xj(c, a);
39 if (i <= 0 &&
40 j <= 0 &&
41 k <= 0)
42 return 1;
43 if (i >= 0 &&
44 j >= 0 &&
45 k >= 0)
46 return 1;
47 return 0;
48 }
49 };
50
51 point v[16];
52 int n;
53 int ans[3];
54
55 void Input()
56 {
57 char ch[3];
58 for (int i = 0; i < n; ++i)
59 scanf("%s%d%d", ch, &v[i].x, &v[i].y);
60 }
61
62 void Output()
63 {
64 sort(ans, ans+3);
65 for (int i = 0; i < 3; ++i)
66 printf("%c", ans[i]+'A');
67 printf("\n");
68 }
69
70 void qt()
71 {
72 double Max, t;
73 bool flag = 1, ok;
74 for (int i = 0; i < n; ++i)
75 for (int j = i+1; j < n; ++j)
76 for (int k = j+1; k < n; ++k)
77 {
78 ok = 1;
79 for (int x = 0; x < n; ++x)
80 {
81 if (x == i ||
82 x == j ||
83 x == k)
84 continue;
85 if (v[x].in(v[i], v[j], v[k]))
86 {
87 ok = 0;
88 break;
89 }
90 }
91 if (!ok)
92 continue;
93 t = v[i].area(v[j], v[k]);
94 if (flag)
95 {
96 Max = t;
97 ans[0] = i;
98 ans[1] = j;
99 ans[2] = k;
100 flag = 0;
101 }
102 else if (Max < t)
103 {
104 Max = t;
105 ans[0] = i;
106 ans[1] = j;
107 ans[2] = k;
108 }
109 }
110 }
111
112 int main()
113 {
114 //freopen("test.txt", "r", stdin);
115 while (scanf("%d", &n) != EOF && n)
116 {
117 Input();
118 qt();
119 Output();
120 }
121 return 0;
122 }

ACM学习历程——UVA10112 Myacm Triangles(计算几何,多边形与点的包含关系)的更多相关文章

  1. ACM学习历程—BestCoder 2015百度之星资格赛1004 放盘子(策略 && 计算几何)

    Problem Description 小度熊喜欢恶作剧.今天他向来访者们提出一个恶俗的游戏.他和来访者们轮流往一个正多边形内放盘子.最后放盘子的是获胜者,会赢得失败者的一个吻.玩了两次以后,小度熊发 ...

  2. ACM学习历程—FZU2148 Moon Game(计算几何)

    Moon Game Description Fat brother and Maze are playing a kind of special (hentai) game in the clearl ...

  3. ACM学习历程—FZU 2144 Shooting Game(计算几何 && 贪心 && 排序)

    Description Fat brother and Maze are playing a kind of special (hentai) game in the playground. (May ...

  4. ACM学习历程—FZU 2140 Forever 0.5(计算几何 && 构造)

    Description   Given an integer N, your task is to judge whether there exist N points in the plane su ...

  5. ACM学习历程—HDU4720 Naive and Silly Muggles(计算几何)

    Description Three wizards are doing a experiment. To avoid from bothering, a special magic is set ar ...

  6. ACM学习历程—HDU1392 Surround the Trees(计算几何)

    Description There are a lot of trees in an area. A peasant wants to buy a rope to surround all these ...

  7. 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始

    以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告

  8. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  9. ACM学习历程—HDU5521 Meeting(图论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是一个人从1开始走,一个人从n开始走.让最 ...

随机推荐

  1. java面试笔记(2019)

    1. 堆啊,栈啊,内存溢出原因 2. Dubbo原理 3. Reids线程 4. 线程池安全 5. linux查看线程命令 6. ABA

  2. scapy windows install

    最近有点扫描网络的需求,都说scapy好,但是安装是个事(当然指的是windows安装)有个scapy3k,支持python3,可惜需要powershell,也就是说windows xp是没有戏了. ...

  3. sealed,new,virtual,abstract与override关键字的区别?

    1. sealed——“断子绝孙” 密封类不能被继承.密封方法可以重写基类中的方法,但其本身不能在任何派生类中进一步重写.当应用于方法或属性时,sealed修饰符必须始终与override一起使用. ...

  4. hibernate QBC查询

    HQL运算符 QBC运算符 含义 = Restrictions.eq() 等于equal <>  Restrictions.ne() 不等于not equal >  Restrict ...

  5. 一些编译php时的configure 参数

    一些编译php时的configure 参数 ./configure –prefix=/usr/local/php php 安装目录 –with-apxs2=/usr/local/apache/bin/ ...

  6. JavaWeb学习总结第四篇--Servlet开发

    Servlet开发 用户在浏览器中输入一个网址并回车,浏览器会向服务器发送一个HTTP请求.服务器端程序接受这个请求,并对请求进行处理,然后发送一个回应.浏览器收到回应,再把回应的内容显示出来.这种请 ...

  7. 输出 pdf

    jar 包 :core-renderer.jar  iText-2.0.8.jar   iTextAsian.jar 方式1: import java.io.FileNotFoundException ...

  8. 再看GS线程

    再看GS线程 void GameServer::ProcessThreadTry() { ; packet rcvPkt; rcvPkt.data = * ]; //该事件工厂主要创建了两个定时器1. ...

  9. Brotli

    https://engineering.linkedin.com/blog/2017/05/boosting-site-speed-using-brotli-compression?utm_sourc ...

  10. Bootstrap aggregating Bagging 合奏 Ensemble Neural Network

    zh.wikipedia.org/wiki/Bagging算法 Bagging算法 (英语:Bootstrap aggregating,引导聚集算法),又称装袋算法,是机器学习领域的一种团体学习算法. ...