题目链接

题意

有 \(n\) 个容积无限的水缸,初始时水量为\(a_1,a_2,...,a_n\),有一把容积为\(k\)的勺子,可以从一个水缸中舀水倒入另一个水缸中。问能否给出操作序列,使得最终某一个水缸中水的容量为\(V\).

思路

参考 - 粉兔.

结论

首先,如果\(\sum_{i=1}^{n}a_i\lt V\),显然不可行。

否则,一旦\(\exists p_1,p_2,...,p_t,s.t.(\sum_{i=1}^{t}a_{p_i})\%k==V\%k\),则我们说,这件事是可行的。

为什么呢?因为一旦可以取到同余的值,那么无论总量是多余还是不足都可以用勺子解决:多了,就往外舀;少了,就从其他缸(\(i.e.\) 第\(j\)个\((j!=p_i(i=1,2,...,t)\)))中补进来。

至于操作的具体细节,暂放一下。

dp

那么该怎么判断是否有上面的条件成立呢?

用 \(dp[i][j]\) 表示前 \(i\) 个缸能否取到模数为 \(j\) 的值,特别的,

\[dp[i][j]=\begin{cases}0,&cannot\ make\ it\cr1,&can\ make\ it\ without\ a_i\cr2,&a_i\ needed\ to\ make\ it\cr\end{cases}
\]

则 \(dp[n][V\%k]\) 即表示前 \(n\) 个缸能否取到模数为 \(k\) 的值。

构造

现在有了这个结论和中间记录的 \(dp\) 值,该怎么推出步骤呢?

注意到,上面的记录过程提供给了我们 \(p_1,p_2,...,p_t\),即必须全部取的缸;而其余的缸,不妨记为 \(q_1,q_2,...,q_s\)。

则可行操作如下:

  1. 将 \(p1,...,p_{t-1}\) 缸中的水全部舀入 \(p_t\) 中;
  2. 将 \(q1,...,q_{s-1}\) 缸中的水全部舀入 \(q_s\) 中;
  3. 在 \(p_t\) 与 \(q_s\) 之间进行多退少补。

注意几种 特殊情况,比如 \(t=n\) 和 \(s=n\) 的情况:

\(t=n\) 即所有的缸都需要,最后总量肯定只会超出,不会不够,并且超出的部分必然是 \(k\) 的整倍数。

此时,将所有缸中的水都舀到某一个缸中,再将超出的部分舀到另一个缸中;

(这种情况可以与一般情况合在一起统一处理)。

\(s=n\) 即所有的缸都不需要,这是什么回事呢?当 \(k|V\) 时就会发生这种情况,即所需要的容积恰好可以用若干勺舀出。

此时,将所有缸中的水都舀到某一个缸中,再将需要的部分舀到另一个缸中。

// 很佩服粉兔啦%%%

Code

#include <bits/stdc++.h>
#define maxn 5010
using namespace std;
typedef long long LL;
int a[maxn], b[maxn], dp[maxn][maxn];
bool flag[maxn];
int main() {
int n, k, v, sum = 0;
scanf("%d%d%d", &n, &k, &v);
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
sum += (b[i] = a[i]), a[i] %= k;
} if (sum < v) { puts("NO"); return 0; }
dp[0][0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < k; ++j) {
if (dp[i-1][j]) {
dp[i][j] = 1;
if (!dp[i][(j+a[i])%k]) dp[i][(j+a[i])%k] = 2;
}
}
}
int tar = v % k;
if (!dp[n][tar]) { puts("NO"); return 0; }
puts("YES");
int ans = 0, fnl1 = -1, fnl2 = -1;
for (int i = n; i >= 1; --i) {
if (dp[i][tar]==2) {
flag[i] = true, (tar += k-a[i]) %= k, ans += b[i];
if (fnl1==-1) fnl1 = i;
}
else if (fnl2 == -1) fnl2 = i;
}
if (fnl1==-1) {
for (int i = 1; i < n; ++i) if (b[i]) {
printf("%d %d %d\n", (b[i] + k-1)/k, i, n);
}
if (v/k) printf("%d %d %d\n", v/k, n, 1);
return 0;
}
assert((v-ans) % k == 0);
int rem = v - ans;
int S1 = b[fnl1], S2 = b[fnl2];
for (int i = 1; i <= n; ++i) {
if (i == fnl1 || i == fnl2 || !b[i]) continue;
if (!flag[i]) printf("%d %d %d\n", (b[i]+k-1)/k, i, fnl2), S2 += b[i];
else printf("%d %d %d\n", (b[i]+k-1)/k, i, fnl1), S1 += b[i];
}
assert((v-S1) % k == 0);
int cnt = (v-S1) / k;
if (cnt>0) printf("%d %d %d\n", cnt, fnl2, fnl1);
else if (cnt<0) printf("%d %d %d\n", -cnt, fnl1, 1);
return 0;
}

Codeforces 920D Tanks的更多相关文章

  1. Codeforces Educational Round 37

    Solved   CodeForces 920A Water The Garden   Solved   CodeForces 920B Tea Queue   Solved   CodeForces ...

  2. Codeforces Round #115 B. Plane of Tanks: Pro 水题

    B. Plane of Tanks: Pro Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/17 ...

  3. Codeforces 877 C. Slava and tanks

    http://codeforces.com/problemset/problem/877/C   C. Slava and tanks time limit per test 2 seconds me ...

  4. codeforces 414D Mashmokh and Water Tanks

    codeforces 414D Mashmokh and Water Tanks 题意 题解 \(a_i\):第 \(i\) 层的结点个数. \(b_i\):第 \(i\) 层初始有水的结点个数. 如 ...

  5. 【codeforces 175D】 Plane of Tanks: Duel

    http://codeforces.com/problemset/problem/175/D (题目链接) 题意 A,B两人玩坦克大战,坦克有生命值,射击间隔,伤害范围,未命中的概率.问A赢的概率是多 ...

  6. Codeforces 877C Slava and tanks(思维)

    题目链接:http://codeforces.com/problemset 题目大意:有n个格子,某些格子里可能有一个或多个坦克,但不知道具体位置,每个坦克被轰炸一次就会移动到相邻的格子里(第1个格子 ...

  7. 【Codeforces Round #442 (Div. 2) C】Slava and tanks

    [链接] 我是链接,点我呀:) [题意] 有n个位置,每个位置都可能有不定数量的tank; 你每次可以选择一个位置投掷炸弹. 并且,这个位置上的所有tank都会受到你的攻击. 并且失去一点体力. 然后 ...

  8. Codeforces Round #339 (Div. 2) B. Gena's Code 水题

    B. Gena's Code 题目连接: http://www.codeforces.com/contest/614/problem/B Description It's the year 4527 ...

  9. Educational Codeforces Round 37

    Educational Codeforces Round 37 这场有点炸,题目比较水,但只做了3题QAQ.还是实力不够啊! 写下题解算了--(写的比较粗糙,细节或者bug可以私聊2333) A. W ...

随机推荐

  1. UNIX网络通信

    一.网络协议 国际标准化组织(ISO)定义了网络协议的基本框架,被称为OSI模型.OSI模型包括应用层.表示层.会话层.传输层.网络层.数据链路层及物理层.而OSI模型过于复杂至今没有得到实际的应用. ...

  2. Nginx 配置支持 WAF

    WAF(Web Application Firewall),中文名叫做“Web应用防火墙” WAF的定义是这样的:Web应用防火墙是通过执行一系列针对HTTP/HTTPS的安全策略来专门为Web应用提 ...

  3. Mybatis中的增删改查

    相比jdbc mybatis在操作数据库方面比jdbc节省了大量的代码,及大量的代码冗余.使得操作起来更加简洁. 在Mapper中分别有着 select,insert, update,delete的这 ...

  4. Python中的正则

    regex_lst = [ ('字符组',), ('非打印字符',), ('特殊字符',), ('定位符',), ('限定符',), ('re模块',), ('分组命名',), ('或匹配',), ( ...

  5. [USACO]奶牛赛跑(逆序对)

    Description 约翰有 N 头奶牛,他为这些奶牛准备了一个周长为 C 的环形跑牛场.所有奶牛从起点同时起跑,奶牛在比赛中总是以匀速前进的,第 i 头牛的速度为 Vi.只要有一头奶牛跑完 L 圈 ...

  6. 用私有构造器或者枚举类型强化Singleton属性

    1.Singleton指仅仅被实例化一次的类.Singleton通常被用来代表那些本质上唯一的系统组件,如窗口管理器或者文件系统.使类称为Singleton会使它的客户端调试变的十分困难,因为无法给S ...

  7. wget常用下载命令

    wget wget是一个从网络上自动下载文件的自由工具,支持通过HTTP.HTTPS.FTP三个最常见的TCP/IP协议下载,并可以使用HTTP代理.wget名称的由来是“World Wide Web ...

  8. P1616 疯狂的采药

    P1616 疯狂的采药 题目背景 此题为NOIP2005普及组第三题的疯狂版. 此题为纪念LiYuxiang而生. 题目描述 LiYuxiang是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为 ...

  9. 常用Style

    有些输入框什么的,字数限制什么的style,ceb为我们写好了.我感觉,每个app的style都是很有用的一个东西. <?xml version="1.0" encoding ...

  10. ECharts的x轴和y轴均使用数值类型

    今天有个需求,就是需要ECharts的x轴和y轴都要使用数值类型,即xAxis.type和yAxis.type均为value,然后我按照我以为的方式修改了下,发现图崩了 发现问题: 然后我打开了ECh ...