【原创】Linux虚拟化KVM-Qemu分析(八)之virtio初探
背景
Read the fucking source code!
--By 鲁迅A picture is worth a thousand words.
--By 高尔基
说明:
- KVM版本:5.9.1
- QEMU版本:5.0.0
- 工具:Source Insight 3.5, Visio
概述
- 从本文开始将研究一下virtio;
- 本文会从一个网卡虚拟化的例子来引入virtio,并从大体架构上进行介绍,有个宏观的认识;
- 细节的阐述后续的文章再跟进;
1. 网卡
1.1 网卡工作原理
先来看一下网卡的架构图(以Intel的82540为例):
- OSI模型,将网络通信中的数据流划分为7层,最底下两层为物理层和数据链路层,对应到网卡上就是
PHY
和MAC控制器
; PHY
:对应物理层,负责通信设备与网络媒介(网线)之间的互通,它定义传输的光电信号、线路状态等;MAC控制器
:对应数据链路层,负责网络寻址、错误侦测和改错等;PHY
和MAC
通过MII/GMII(Media Independent Interface)
和MDIO(Management Data Input/output)
相连;MII/GMII(Gigabit MII)
:由IEEE
定义的以太网行业标准,与媒介无关,包含数据接口和管理接口,用于网络数据传输;MDIO
接口,也是由IEEE
定义,一种简单的串行接口,通常用于控制收发器,并收集状态信息等;- 网卡通过PCI接口接入到PCI总线中,CPU可以通过访问BAR空间来获取数据包,也有网卡直接挂在内存总线上;
- 网卡还有一颗EEPROM芯片,用于记录厂商ID、网卡的MAC地址、配置信息等;
我们主要关心它的数据流,所以,看看它的工作原理吧:
- 网络包的接收与发送,都是典型的
生产者-消费者
模型,简单来说,CPU会在内存中维护两个ring-buffer
,分别代表RX
和TX
,ring-buffer
中存放的是描述符,描述符里包含了一个网络包的信息,包括了网络包地址、长度、状态等信息; ring-buffer
有头尾两个指针,发送端为:TDH(Transmit Descriptor Head)和TDT(Transmit Descriptor Tail)
,同理,接收端为:RDH(Receive Descriptor Head)和RDT(Receive Descriptor Tail)
,在数据传输时,由CPU和网卡来分开更新头尾指针的值,这也就是生产者更新尾指针,消费者更新头指针,永远都是消费者追着生产者跑,ring-buffer
也就能转起来了;- 数据的传输,使用DMA来进行搬运,CPU的拷贝显然是一种低效的选择。在之前PCI系列分析文章中分析过,PCI设备有自己的BAR空间,可以通过DMA在BAR空间和DDR空间内进行搬运;
1.2 Linux网卡驱动
在网卡数据流图中,我们也基本看到了网卡驱动的影子,驱动与网卡之间是异步通信:
- 驱动程序负责硬件的初始化,以及TX和RX的
ring-buffer
的创建及初始化; ndo_start_xmit
负责将网络包通过驱动程序发送出去,netif_receive_skb
负责通过驱动程序接收网络包数据;- 数据通过
struct sk_buff
来存储; - 发送数据时,CPU负责准备TX网络包数据以及描述符资源,更新TDT指针,并通知NIC可以进行数据发送了,当数据发送完毕后NIC通过中断信号通知CPU进行下一个包的处理;
- 接收数据时,CPU负责准备RX的描述符资源,接收数据后,NIC通过中断通知CPU,驱动程序通过调度内核线程来处理网络包数据,处理完成后进行下一包的接收;
2. 网卡全虚拟化
2.1 全虚拟化方案
全虚拟化方案,通过软件来模拟网卡,Qemu+KVM的方案如下图:
- Qemu中,设备的模拟称为前端,比如
e1000
,前端与后端通信,后端再与底层通信,我们来分别看看发送和接收处理的流程;
发送:
- Guest OS在准备好网络包数据以及描述符资源后,通过写
TDT
寄存器,触发VM的异常退出,由KVM模块接管; - KVM模块返回到Qemu后,Qemu会检查VM退出的原因,比如检查到
e1000
寄存器访问出错,因而触发e1000前端
工作; - Qemu能访问Guest OS中的地址内容,因而
e1000前端
能获取到Guest OS内存中的网络包数据,发送给后端,后端再将网络包数据发送给TUN/TAP驱动,其中TUN/TAP为虚拟网络设备; - 数据发送完成后,除了更新
ring-buffer
的指针及描述符状态信息外,KVM模块会模拟TX中断; - 当再次进入VM时,Guest OS看到的是数据已经发送完毕,同时还需要进行中断处理;
- Guest OS跑在vCPU线程中,发送数据时相当于会打算它的执行,直到处理完后再恢复回来,也就是一个严格的同步处理过程;
- Guest OS在准备好网络包数据以及描述符资源后,通过写
接收:
- 当TUN/TAP有网络包数据时,可以通过读取TAP文件描述符来获取;
- Qemu中的I/O线程会被唤醒并触发后端处理,并将数据发送给
e1000前端
; e1000
前端将数据拷贝到Guest OS的物理内存中,并模拟RX中断,触发VM的退出,并由KVM模块接管;- KVM模块返回到Qemu中进行处理后,并最终重新进入Guest OS的执行中断处理;
- 由于有I/O线程来处理接收,能与vCPU线程做到并行处理,这一点与发送不太一样;
2.2 弊端
- Guest OS去操作寄存器的时候,会触发VM退出,涉及到KVM和Qemu的处理,并最终再次进入VM,overhead较大;
- 不管是在Host还是Guest中,中断处理的开销也很大,中断涉及的寄存器访问也较多;
- 软件模拟的方案,吞吐量性能也比较低,时延较大;
所以,让我们大声喊出本文的主角吧!
3. 网卡半虚拟化
在进入主题前,先思考几个问题:
- 全虚拟化下Guest可以重用驱动、网络协议栈等,但是在软件全模拟的情况下,我们是否真的需要去访问寄存器吗(比如中断处理),真的需要模拟网卡的自协商机制以及EEPROM等功能吗?
- 是否真的需要模拟大量的硬件控制寄存器,而这些寄存器在软件看来毫无意义?
- 是否真的需要生产者/消费者模型的通知机制(寄存器访问、中断)?
3.1 virtio
网卡的工作过程是一个生产者消费者模型,但是在前文中可以看出,在全虚拟化状态下存在一些弊端,一个更好的生产者消费者模型应该遵循以下原则:
- 寄存器只被生产者使用去通知消费者
ring-buffer
有数据(消费者可以继续消费),而不再被用作存储状态信息; - 中断被消费者用来通知生产者
ring-buffer
是非满状态(生产者可以继续生产); - 生产者和消费者的状态信息应该存储在内存中,这样读取状态信息时不需要VM退出,减少overhead;
- 生产者和消费者跑在不同的线程中,可以并行运行,并且尽可能多的处理任务;
- 非必要情况下,相互之间的通知应该避免使用;
- 忙等待(比如轮询)不是一个可以接受的通用解决方案;
基于上述原则,我们来看看从特殊到一般的过程:
- 第一行是针对网卡的实现,第二行更进一步的抽象,第三行是通用的解决方案了,对I/O操作的虚拟化通用支持;
所以,在virtio的方案下,网卡的虚拟化看上去就是下边这个样子了:
- Hypervisor和Guest都需要实现virtio,这也就意味着Guest的设备驱动知道自己本身运行在VM中;
- virtio的目标是高性能的设备虚拟化,已经形成了规范来定义标准的消息传递API,用于驱动和Hypervisor之间的传递,不同的驱动和前端可以使用相同的API;
- virtio驱动(比如图中的virtio-net driver)的工作是将OS-specific的消息转换成virtio格式的消息,而对端(virtio-net frontend)则是做相反的工作;
virtio的数据传递使用scatter-gather list(sg-list)
:
- sg-list是概念上的(物理)地址和长度对的链表,通常作为数组来实现;
- 每个sg-list描述一个多块的buffer,消费者用它来作为输入或输出操作;
virtio的核心是virtqueue(VQ)
的抽象:
- VQ是队列,sg-list会被Guest的驱动放置到VQ中,以供Hypervisor来消费;
- 输出sg-list用于向Hypervisor来发送数据,而输入sg-list用于接收Hypervisor的数据;
- 驱动可以使用一个或多个
virqueue
;
- 当Guest的驱动产生一个sg-list时,调用
add_buf(SG, Token)
入列; - Hypervisor进行出列操作,并消费sg-list,并将sg-list push回去;
- Guest通过
get_buf()
进行清理工作;
上图说的是数据流方向,那么事件的通知机制如下:
- 当Guest驱动想要Hypervisor消费sg-list时,通过VQ的
kick
来进行通知; - 当Hypervisor通知Guest驱动已经消费完了,通过
interupt
来进行通知;
大体的数据流和控制流讲完了,细节实现后续再跟进了。
3.2 半虚拟化方案
那么,半虚拟化框架下的网卡虚拟化数据流是啥样的呢?
- 发送
- 接收
相信你应该对virtio有个大概的了解了,好了,收工。
参考
《Virtio networking: A case study of I/O paravirtualization》
《 PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developer's Manual》
欢迎关注个人公众号,不定期更新Linux相关技术文章。
【原创】Linux虚拟化KVM-Qemu分析(八)之virtio初探的更多相关文章
- KVM/QEMU/qemu-kvm/libvirt 概念全解
目录 目录 前言 KVM QEMU KVM 与 QEMU qemu-kvm Libvirt Libvirt 在 OpenStack 中的应用 前言 如果是刚开始接触虚拟机技术的话, 对上述的概念肯定会 ...
- 【原创】Linux虚拟化KVM-Qemu分析(三)之KVM源码(1)
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: KVM版本:5.9 ...
- 【原创】Linux虚拟化KVM-Qemu分析(一)
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: KVM版本:5.9 ...
- 【原创】Linux虚拟化KVM-Qemu分析(四)之CPU虚拟化(2)
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: KVM版本:5.9 ...
- 【原创】Linux虚拟化KVM-Qemu分析(五)之内存虚拟化
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: KVM版本:5.9 ...
- Linux虚拟化技术KVM、QEMU与libvirt的关系(转)
说明:个人理解,KVM是内核虚拟化技术,而内核是不能使用在界面上使用的,那么此时QEMU提供了用户级别的使用界面,相互辅助.当然,单独使用QEMU也是可以实现一整套虚拟机,不过QEMU+KVM基本是标 ...
- 【原创】Linux虚拟化KVM-Qemu分析(十)之virtio驱动
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: KVM版本:5.9 ...
- 关于Linux虚拟化技术KVM的科普 科普二(KVM虚拟机代码揭秘)
代码分析文章<KVM虚拟机代码揭秘--QEMU代码结构分析>.<KVM虚拟机代码揭秘--中断虚拟化>.<KVM虚拟机代码揭秘--设备IO虚拟化>.<KVM虚拟 ...
- 关于Linux虚拟化技术KVM的科普 科普三(From OenHan)
http://oenhan.com/archives,包括<KVM源代码分析1:基本工作原理>.<KVM源代码分析2:虚拟机的创建与运行>.<KVM源代码分析3:CPU虚 ...
- KVM 介绍(3):I/O 全虚拟化和准虚拟化 [KVM I/O QEMU Full-Virtualizaiton Para-virtualization]
学习 KVM 的系列文章: (1)介绍和安装 (2)CPU 和 内存虚拟化 (3)I/O QEMU 全虚拟化和准虚拟化(Para-virtulizaiton) (4)I/O PCI/PCIe设备直接分 ...
随机推荐
- [GXYCTF2019]simple CPP
[GXYCTF2019]simple CPP 一.查壳 无壳,64位程序 二.IDA分析 找到主函数后动态调试,看的更清楚 经过调试后我们可以找到len就是储存字符串长度的变量,之后判断长度是不是大于 ...
- 使用轮询&长轮询实现网页聊天室
前言 如果有一个需求,让你构建一个网络的聊天室,你会怎么解决? 首先,对于HTTP请求来说,Server端总是处于被动的一方,即只能由Browser发送请求,Server才能够被动回应. 也就是说,如 ...
- C# 打开Excel文件
方法一:(调用Excel的COM组件) 在项目中打开Add Reference对话框,选择COM栏,之后在COM列表中找到"Microsoft Excel 11.0 Object ...
- jQuery EasyUI学习二
1. 课程介绍 1. Datagrid组件(掌握) 2. Dialog.form组件(掌握) 3. Layout.Tabs;(掌握) Datagrid组件 2.1. 部署运行pss启动无错 ...
- 迭代器设计模式,帮你大幅提升Python性能
大家好,我们的git专题已经更新结束了,所以开始继续给大家写一点设计模式的内容. 今天给大家介绍的设计模式非常简单,叫做iterator,也就是迭代器模式.迭代器是Python语言当中一个非常重要的内 ...
- 基于Python的接口自动化实战-基础篇之pymysql模块操作数据库
引言 在进行功能或者接口测试时常常需要通过连接数据库,操作和查看相关的数据表数据,用于构建测试数据.核对功能.验证数据一致性,接口的数据库操作是否正确等.因此,在进行接口自动化测试时,我们一样绕不开接 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- C. Three Bags【CF 1467】
传送门 思路:对于一般情况,我们有三个袋子,容易想到把袋子里物品的价值排序.然后贪心,我们想让最后的价值最大,则三个袋子最后都可以剩余一个物品,这三个物品总和需要最大,最好的情况就是三个物品的符号&q ...
- Java反编译反混淆神器 - CFR
最近有大量jar包需要反编译后使用,但是由于jar包中的类被混淆过了,直接反编译以后的里面所有的变量都是一个名字.所以这里介绍一个反混淆神器:CRF. 不知道是不是官网的链接:http://www.b ...
- 【十天自制软渲染器】DAY 01:图形学学习建议与环境搭建
推荐直接阅读博客原文,更新更及时,阅读体验更佳 「十天自制软渲染器」这个标题我承认标题党了.在对图形学一无所知的情况下想十天自制一个软渲染器,就好似一节课没上过却试图一个晚上看完<30 天精通 ...