POJ-3208 Apocalypse Someday (数位DP)
只要某数字的十进制表示中有三个6相邻,则该数字为魔鬼数,求第X小的魔鬼数\(X\le 5e7\)
这一类题目可以先用DP进行预处理,再基于拼凑思想,用“试填法"求出最终的答案
\(F[i,3]\)表示由 \(i\) 位数字构成的魔鬼数有多少个,\(F[i,j](0\le j\le 2)\) 表示由 \(i\) 位数字构成的,开头已经有连续 \(j\) 个6的非魔鬼数有多少个。(允许前导0的存在,想一想为什么)
转移方程
- \(F[i,0] = 9*(F[i-1,0] + F[i-1,1] + F[i-1,2])\)
- \(F[i,1] = F[i-1,0]\)
- \(F[i,2] = F[i-1,1]\)
- \(F[i,3] = F[i-1,2] + 10 * F[i-1,3]\)
然后一位一位的试填,要注意前面填过的数字结尾如果有 k 个6,通过后面拼接 3-k 个6也可以构成魔鬼数
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
ll f[21][4];
int T,n,l;
void init(){
f[0][0] = 1;
for(int i=1;i<=20;i++){
f[i][0] = 9*(f[i-1][0] + f[i-1][1] + f[i-1][2]);
f[i][1] = f[i-1][0];
f[i][2] = f[i-1][1];
f[i][3] = f[i-1][2] + 10 * f[i-1][3];
}
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d",&n);
//l为答案的长度
for(l=3;f[l][3] < n;l++);
//k表示填过的数字末尾有k个6
for(int i=l,k=0;i;i--){
for(int j=0;j<=9;j++){
ll cnt = f[i-1][3];//后面预处理出的魔鬼数
//找能够拼凑出来的魔鬼数
if(j == 6 || k == 3){
if(k == 3){
for(int x = 0;x < 3;x++)
cnt += f[i-1][x];
}else{
for(int x = max(3-k-1, 0);x<3;x++){
cnt += f[i-1][x];
}
}
}
if(cnt < n) n -= cnt;
else{
if(k < 3) j == 6 ? k ++ : k=0;
printf("%d",j);break;
}
}
}
cout<<endl;
}
return 0;
}
POJ-3208 Apocalypse Someday (数位DP)的更多相关文章
- POJ 3689 Apocalypse Someday [数位DP]
Apocalypse Someday Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 1807 Accepted: 87 ...
- poj3208 Apocalypse Someday 数位dp+二分 求第K(K <= 5*107)个有连续3个6的数。
/** 题目:poj3208 Apocalypse Someday 链接:http://poj.org/problem?id=3208 题意:求第K(K <= 5*107)个有连续3个6的数. ...
- POJ 3208 Apocalypse Someday
题意: 将含有连续的三个6的数称为不吉利数,比如666,1666,6662,但是6266吉利.则666为第一个不吉利数,输入整数n,求第n个不吉利数.(n <= 5*10^7) 解法: 如果是给 ...
- poj3208 Apocalypse Someday[数位DP]
数位中出现至少3个连续的'6'的数字(称魔鬼数),询问满足要求的排名k的数. 经典题型.采用试填法. 递推做法:预处理出$i$位数字中满足要求的数(下记为'魔鬼数').对每一位都从0到9试一遍,然而卡 ...
- poj 3252 Round Numbers 数位dp
题目链接 找一个范围内二进制中0的个数大于等于1的个数的数的数量.基础的数位dp #include<bits/stdc++.h> using namespace std; #define ...
- poj 3252 Round Numbers(数位dp 处理前导零)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- POJ 3252 Round Numbers(数位dp&记忆化搜索)
题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...
- $POJ$3252 $Round\ Numbers$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$w$ 沉迷写博客,,,不想做题,,,$QAQ$口胡一时爽一直口胡一直爽$QAQ$ 先港下题目大意嗷$QwQ$大概就说,给定区间$[l,r]$,求区间内满足二进制 ...
- POJ 3208-Apocalypse Someday(数位dp)
题意:给定n,输出第n大包含666的数字. 分析:dp[i][j][k][l]表示 长度为i,当前位是否是6,前一位是否6,是否已经包含666,表示的数量,再用二分找出第n大的这样的数字. #incl ...
- POJ - 3252 - Round Numbers(数位DP)
链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...
随机推荐
- 使用 Admission Webhook 机制实现多集群资源配额控制
1 要解决的问题 集群分配给多个用户使用时,需要使用配额以限制用户的资源使用,包括 CPU 核数.内存大小.GPU 卡数等,以防止资源被某些用户耗尽,造成不公平的资源分配. 大多数情况下,集群原生的 ...
- Solon rpc 之 SocketD 协议 - 消息订阅模式
Solon rpc 之 SocketD 协议系列 Solon rpc 之 SocketD 协议 - 概述 Solon rpc 之 SocketD 协议 - 消息上报模式 Solon rpc 之 Soc ...
- 使用SharePoint App-Only获得访问权限
目前在开发SharePoint Online的过程中,主要使用通过Azure AD的方式获得应用的访问权限,但是SharePoint App-Only的方式依旧被保留了.使用这种方式进行CSOM开发比 ...
- 机器学习算法-PCA降维技术
机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特 ...
- 天梯赛练习 L3-006 迎风一刀斩 (30分) 几何关系
题目分析: 对于给出的两个多边形是否可以组成一个矩形,这里我们分以下几种情况讨论 1.首先对于给出的两个多边形只有3-3,3-4,3-5,4-4才有可能组成一个矩形,并且两个多边形只可能是旋转90,1 ...
- 二进制格式 PLY 模型文件的读取与渲染
PLY 文件头部信息: ply format binary_little_endian 1.0 comment VCGLIB generated element vertex 13469 proper ...
- 【Oracle】Oracle SQL的优化软件
对于SQL开发人员和DBA来说,根据业务需求写出一条正确的SQL很容易.但是SQL的执行性能怎么样呢?能优化一下跑得更快吗?如果不是资深 DBA,估计很多人都没有信心. 幸运的是,自动化优化工具可以 ...
- 使用fdopen对python进程产生的文件进行权限最小化配置
需求背景 用python进行文件的创建和读写操作时,我们很少关注所创建的文件的权限配置.对于一些安全性较高的系统,如果我们创建的文件权限其他用户或者同一用户组里的其他用户有可读权限的话,有可能导致不必 ...
- kotlin和python哪个好!程序员怎样优雅度过35岁中年危机?满满干货指导
导语 学历永远是横在我们进人大厂的一道门槛,好像无论怎么努力,总能被那些985,211 按在地上摩擦! 不仅要被"他们"看不起,在HR挑选简历,学历这块就直接被刷下去了,连证明自己 ...
- Linux内核[CVE-2016-5195] (dirty COW)原理分析
[原创]Linux内核[CVE-2016-5195] (dirty COW)原理分析-二进制漏洞-看雪论坛-安全社区|安全招聘|bbs.pediy.com https://bbs.pediy.com/ ...