Gym 101480F Frightful Formula(待定系数)题解

#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 2e5 + 10;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1e6 + 3;
ll inv[maxn << 1], fac[maxn << 1];
ll ppow(ll a, ll b){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ret;
}
void init(int n){
fac[0] = inv[0] = 1;
for(int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % MOD;
inv[n] = ppow(fac[n], MOD - 2);
for(int i = n - 1; i >= 1; i--){
inv[i] = inv[i + 1] * (i + 1LL) % MOD;
}
}
ll C(int n, int m){
if(m == 0) return 1;
return fac[n] * inv[m] % MOD * inv[n - m] % MOD;
}
ll l[maxn], t[maxn];
ll dp[1000][1000];
int main(){
ll n, a, b, c;
scanf("%lld%lld%lld%lld", &n, &a, &b, &c);
init(n + n);
ll k = c * ppow(a + b - 1, MOD - 2) % MOD;
ll ans = 0;
for(int i = 1; i <= n; i++)
scanf("%lld", &l[i]), l[i] = (l[i] + k) % MOD;
for(int i = 1; i <= n; i++)
scanf("%lld", &t[i]), t[i] = (t[i] + k) % MOD;
for(int i = 2; i <= n; i++){
ans = (ans + l[i] * C(n + n - i - 2, n - 2) % MOD * ppow(a, n - 1) % MOD * ppow(b, n - i) % MOD) % MOD;
// printf("** %lld %lld\n", n + n - i - 2, n - 2);
}
for(int i = 2; i <= n; i++){
ans = (ans + t[i] * C(n + n - i - 2, n - 2) % MOD * ppow(a, n - i) % MOD * ppow(b, n - 1) % MOD) % MOD;
}
ans = ((ans - k) % MOD + MOD) % MOD;
printf("%lld\n", ans);
return 0;
}
/*
4 3 5 2
7 1 4 3
7 4 4 8
*/
/*
3 2 3 0
1 1 1
1 1 1
*/
Gym 101480F Frightful Formula(待定系数)题解的更多相关文章
- Frightful Formula Gym - 101480F (待定系数法)
Problem F: Frightful Formula \[ Time Limit: 10 s \quad Memory Limit: 512 MiB \] 题意 题意就是存在一个\(n*n\)的矩 ...
- LG4351 [CERC2015]Frightful Formula
Frightful Formula 给你一个\(n\times n\)矩阵的第一行和第一列,其余的数通过如下公式推出: \[f_{i,j}=a\cdot f_{i,j-1}+b\cdot f_{i-1 ...
- bzoj 4451 : [Cerc2015]Frightful Formula FFT
4451: [Cerc2015]Frightful Formula Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 177 Solved: 57[Sub ...
- Codeforces GYM 100876 J - Buying roads 题解
Codeforces GYM 100876 J - Buying roads 题解 才不是因为有了图床来测试一下呢,哼( 题意 给你\(N\)个点,\(M\)条带权边的无向图,选出\(K\)条边,使得 ...
- BZOJ4451 [Cerc2015]Frightful Formula 多项式 FFT 递推 组合数学
原文链接http://www.cnblogs.com/zhouzhendong/p/8820963.html 题目传送门 - BZOJ4451 题意 给你一个$n\times n$矩阵的第一行和第一列 ...
- BZOJ4451 : [Cerc2015]Frightful Formula
$(i,1)$对答案的贡献为$l_iC(2n-i-2,n-i)a^{n-1}b^{n-i}$. $(1,i)$对答案的贡献为$t_iC(2n-i-2,n-i)*a^{n-i}b^{n-1}$. $(i ...
- URAL1519:Formula 1——题解
http://acm.timus.ru/problem.aspx?space=1&num=1519 https://vjudge.net/problem/URAL-1519 题目大意:给一个网 ...
- P4351-[CERC2015]Frightful Formula【组合数学,MTT】
正题 题目链接:https://www.luogu.com.cn/problem/P4351 题目大意 \(n*n\)的矩形,给出第一行和第一列的数,剩下的满足\(F_{i,j}=a*F_{i,j-1 ...
- Gym - 101480 CERC 15:部分题目题解(队内第N次训练)
-------------------题目难度较难,但挺有营养的.慢慢补. A .ASCII Addition pro:用一定的形式表示1到9,让你计算加法. sol:模拟. solved by fz ...
随机推荐
- 1.5V升压3V集成电路升压芯片
干电池1.5V升压3V的升压芯片,适用于干电池升压产品输出3V供电 1.5V输入时,输出3V,电流可达500MA. PW5100是一款效率大.10uA低功耗 PW5100输入电压:0.7V-5V PW ...
- MATLAB中load和imread的读取方式区别
load是导入文件,一般从mat文件中,读取的是结构体imread是图像处理工具箱的库函数,处理图像比较方便,读取的是矩阵 1.之前将数组或者矩阵保存为一个mat格式的文件,在进行load命令读取时: ...
- js 前端词典对象的属性和值读取
通常服务端返回比较奇葩的数据对象,不知道该怎么将这个对象转换为可用实体,想了很久,突发奇想想到了这么个方法. 需求是这样:企业有多个产品,产品有分为很几个种类.服务端有获取产品的接口,和单独获取产品种 ...
- 前端面试之JavaScript中的闭包!
前端面试之JavaScript中的闭包! 闭包 闭包( closure )指有权访问另一个函数作用域中变量的函数. ----- JavaScript 高级程序设计 闭包其实可以理解为是一个函数 简单理 ...
- GIT常用命令:
1.安装好Git之后,点击鼠标右键即可看到有Git bush选项,点击即可进入Git命令行操作. 2.使用命令: git config --global user.name "lyh&q ...
- 墓碑机制与 iOS 应用程序的生命周期
① 应用程序的状态 iOS 应用程序一共有 5 种状态: Not running:应用未运行 Inactive:应用运行在 foreground 但没有接收事件 Active:应用运行在 foregr ...
- SMTP 协议发送邮件的整体过程
使用 SMTP 发送邮件_使用 SMTP 发送邮件_发送邮件_用户指南_邮件推送-阿里云 https://help.aliyun.com/knowledge_detail/51622.html 通过 ...
- java画海报二维码
package cn.com.yitong.ares.qrcode; import java.awt.BasicStroke;import java.awt.Color;import java.awt ...
- 键相同,比较两个map中的值是否相同
获取.排序.比较两个Map中相同key对应value值 /** * * @param hashMap 原数据 * @param hashMap2 需要比较的数据 * @return */ privat ...
- physical CPU vs logical CPU vs Core vs Thread vs Socket(翻译)
原文地址: http://www.daniloaz.com/en/differences-between-physical-cpu-vs-logical-cpu-vs-core-vs-thread-v ...