OpenCV开发笔记(七十二):红胖子8分钟带你使用opencv+dnn+tensorFlow识别物体
前言
级联分类器的效果并不是很好,准确度相对深度学习较低,本章使用opencv通过tensorflow深度学习,检测已有模型的分类。
Demo
可以猜测,1其实是人,18序号类是狗,因为笔者未找到对应的分类具体信息。
Tensorflow模型下载
https://github.com/opencv/opencv_extra
(注意:未找到对应的分类具体信息。)
OpenCV深度识别基本流程
opencv3.4.x支持了各种模型。
支持的模型
opencv3.4.x支持一下深度学习的模型:
- caffe:.caffemodel
官网:http://caffe.berkeleyvision.org
- tensorflow:.pb
官网:https://www.tensorflow.org
- torch:.t7 | .net
官网:http://torch.ch
- darknet:.weights
官网:https://pjreddie.com/darknet
- DLDT:.bin
官网:https://software.intel.com/openvino-toolkit
操作步骤:tensorflow
- 步骤一:加载模型和配置文件,建立神经网络。
根据不同的模型,使用cv::dnn::readNetFromXXX系列函数进行读取,opencv3.4.x系列支持的dnn模型(支持模型往上看)。
举例tensorflow模型如下:
std::string weights = "E:/qtProject/openCVDemo/dnnData/" \
"ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb";
std::string prototxt = "E:/qtProject/openCVDemo/dnnData/" \
"ssd_mobilenet_v1_coco_2017_11_17.pbtxt";
cv::dnn::Net net = cv::dnn::readNetFromTensorflow(weights, prototxt);
- 步骤二:将要预测的图片加入到神经网络中
加入之后,需要识别图片,那么需要把图片输入到神经网络当中去,如下:
cv::Mat mat;
cv::Mat blob;
mat = cv::imread("E:/testFile/14.jpg");
cv::dnn::blobFromImage(mat, blob);
- 步骤三:分类预测,获取识别的结果
输入之后,就进行识别,识别是向前预测(分类预测),并且拿到结果。
cv::Mat prob = net.forward();
对于预测的结果,存于cv::Mat类型的prob,然后需要统一对prob进行处理,使其成为我们可以使用的数据,代码如下:
cv::Mat detectionMat(prob.size[2], prob.size[3], CV_32F, prob.ptr<float>());
对于从结果prob转换为detectionMat后,其结构如下:
cv::Mat为多行七列,每一行代表一个检测到的分类,具体列信息如下表:
(注意:具体的使用,请参照“步骤四”)
- 步骤四:对达到置信度的可以通过输出的mat进行分类和框选
cv::Mat detectionMat(prob.size[2], prob.size[3], CV_32F, prob.ptr<float>());
// 置信度预制,大于执行度的将其使用rect框出来
float confidenceThreshold = 0.75;
for(int i = 0; i < detectionMat.rows; i++)
{
float confidence = detectionMat.at<float>(i, 2);
if (confidence > confidenceThreshold)
{
// 高于置信度的,获取其x、y、以及对应的宽度高度,进行框选
int classId = (detectionMat.at<float>(i, 1));
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * mat.cols);
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * mat.rows);
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * mat.cols);
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * mat.rows);
cv::Rect object((int)xLeftBottom,
(int)yLeftBottom,
(int)(xRightTop - xLeftBottom),
(int)(yRightTop - yLeftBottom));
cv::rectangle(mat, object, cv::Scalar(0, 255, 0), 2);
qDebug() << __FILE__ << __LINE__
<< classId
<< confidence << confidenceThreshold
<< object.x << object.y << object.width << object.height;
}
}
函数原型
读取tensorflow模型与配置文件函数原型
Net readNetFromTensorflow(const String &model,
const String &config = String());
从文件中读取。
- 参数一:用二进制协议描述网络体系结构的.pb文件的路径;
- 参数二:包含protobuf格式的文本图形定义的.pbtxt文件的路径。生成的网络对象由文本图构建,使用来自二进制的权重让我们更灵活些;
Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
const std::vector<uchar>& bufferConfig = std::vector<uchar>());
从缓存中读取。
- 参数一:包含pb文件内容的bufferModel缓冲区;
- 参数二:包含pbtxt文件内容的bufferConfig缓冲区;
Net readNetFromTensorflow(const char *bufferModel,
size_t lenModel,
const char *bufferConfig = NULL,
size_t lenConfig = 0);
- 参数一:包含pb文件内容的bufferModel缓冲区;
- 参数二:bufferModel缓冲长度;
- 参数三:包含pbtxt文件内容的bufferConfig缓冲区;
- 参数四:bufferConfig缓冲长度;
读取图片(需要识别的)函数原型
Mat blobFromImage(InputArray image,
double scalefactor=1.0,
const Size& size = Size(),
const Scalar& mean = Scalar(),
bool swapRB=false,
bool crop=false,
int ddepth=CV_32F);
void blobFromImage(InputArray image,
OutputArray blob,
double scalefactor=1.0,
const Size& size = Size(),
const Scalar& mean = Scalar(),
bool swapRB=false,
bool crop=false,
int ddepth=CV_32F);.
Mat blobFromImages(InputArrayOfArrays images,
double scalefactor=1.0,
Size size = Size(),
const Scalar& mean = Scalar(),
bool swapRB=false,
bool crop=false,
int ddepth=CV_32F);
void blobFromImages(InputArrayOfArrays images,
OutputArray blob,
double scalefactor=1.0,
Size size = Size(),
const Scalar& mean = Scalar(),
bool swapRB=false,
bool crop=false,
int ddepth=CV_32F);
从图像创建区域。可选择从中心调整和裁剪图像。
- 参数一:图像输入图像(1、3或4通道);
- 参数二:大小输出图像的空间大小;
- 参数三:从通道中减去平均值的平均标量。价值是有意的,如果image有BGR顺序,swapRB为真,则按(mean-R,mean-G,mean-B)顺序排列;
- 参数四:图像值的缩放因子乘数;
- 参数五:swapRB标志,指示交换第一个和最后一个通道,在三通道图像是必要的;
- 参数六:裁剪标志,指示调整大小后是否裁剪图像;
- 参数七:输出blob的深度,选择CV_32F或CV_8U;
设置神经网络输入函数原型
void cv::dnn::Net::setInput(InputArray blob,
const String& name = "",
double scalefactor = 1.0,
const Scalar& mean = Scalar());
设置网络的新输入值。
- 参数一:一个新的blob。应具有CV_32F或CV_8U深度。
- 参数二:输入层的名称。
- 参数三:可选的标准化刻度。
- 参数四:可选的平均减去值。
深度检测识别(向前预测)函数原型
void cv::dnn::Net::Mat forward(const String& outputName = String());
向前预测,返回指定层的第一个输出的blob,一般是返回最后一层,可使用cv::Net::getLayarNames()获取所有的层名称。
- 参数一:outputName需要获取输出的层的名称
Demo源码
void OpenCVManager::testTensorflow()
{
// 训练好的模型以及其模型的后缀名
// .caffemodel (Caffe, http://caffe.berkeleyvision.org/)
// .pb (TensorFlow, https://www.tensorflow.org/)
// .t7 | *.net (Torch, http://torch.ch/)
// .weights (Darknet, https://pjreddie.com/darknet/)
// .bin (DLDT, https://software.intel.com/openvino-toolkit)
// https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
std::string weights = "E:/qtProject/openCVDemo/dnnData/" \
"ssd_mobilenet_v1_coco_2017_11_17/"frozen_inference_graph.pb";
std::string prototxt = "E:/qtProject/openCVDemo/dnnData/" \
"ssd_mobilenet_v1_coco_2017_11_17.pbtxt";
cv::dnn::Net net = cv::dnn::readNetFromTensorflow(weights, prototxt);
if(net.empty())
{
qDebug() << __FILE__ << __LINE__ << "net is empty!!!";
return;
}
cv::Mat mat;
cv::Mat blob;
// 获得所有层的名称和索引
std::vector<cv::String> layerNames = net.getLayerNames();
int lastLayerId = net.getLayerId(layerNames[layerNames.size() - 1]);
cv::Ptr<cv::dnn::Layer> lastLayer = net.getLayer(cv::dnn::DictValue(lastLayerId));
qDebug() << __FILE__ << __LINE__
<< QString(lastLayer->type.c_str())
<< QString(lastLayer->getDefaultName().c_str())
<< QString(layerNames[layerNames.size()-1].c_str());
#if 0
// 视频里面的识别
cv::VideoCapture capture;
if(!capture.open("E:/testFile/4.avi"))
{
qDebug() << __FILE__ << __LINE__ << "Failed to open videofile!!!";
return;
}
#endif
while(true)
{
#if 1
// 读取图片识别
mat = cv::imread("E:/testFile/15.jpg");
if(!mat.data)
{
qDebug() << __FILE__ << __LINE__ << "Failed to read image!!!";
return;
}
#else
// 视频里面的识别
capture >> mat;
if(mat.empty())
{
cv::waitKey(0);
break;
}
#endif
cv::dnn::blobFromImage(mat, blob);
net.setInput(blob);
// 推理预测:可以输入预测的图层名称
// cv::Mat prob = net.forward("detection_out");
cv::Mat prob = net.forward();
// 显示识别花费的时间
std::vector<double> layersTimes;
double freq = cv::getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
std::string label = cv::format("Inference time: %.2f ms", t);
cv::putText(mat, label, cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 255, 0));
cv::Mat detectionMat(prob.size[2], prob.size[3], CV_32F, prob.ptr<float>());
// 置信度预制,大于执行度的将其使用rect框出来
float confidenceThreshold = 0.75;
for(int i = 0; i < detectionMat.rows; i++)
{
float confidence = detectionMat.at<float>(i, 2);
if (confidence > confidenceThreshold)
{
// 高于置信度的,获取其x、y、以及对应的宽度高度,进行框选
int classId = (detectionMat.at<float>(i, 1));
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * mat.cols);
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * mat.rows);
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * mat.cols);
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * mat.rows);
cv::Rect object((int)xLeftBottom,
(int)yLeftBottom,
(int)(xRightTop - xLeftBottom),
(int)(yRightTop - yLeftBottom));
cv::rectangle(mat, object, cv::Scalar(0, 255, 0), 2);
qDebug() << __FILE__ << __LINE__
<< classId
<< confidence << confidenceThreshold
<< object.x << object.y << object.width << object.height;
}
}
cv::imshow(_windowTitle.toStdString(), mat);
cv::waitKey(0);
}
}
对应工程模板v1.64.0
openCVDemo_v1.64.0_基础模板_tensorFlow分类检测.rar。
入坑
入坑一:加载模型时候错误
错误
原因
.pb模型文件与.pbtxt文件不对应,版本也有关系。
解决
更换模型,使用正确的pb与pbtxt对应的文件。
上一篇:《OpenCV开发笔记(七十一):红胖子8分钟带你深入级联分类器训练》
下一篇:持续补充中…
OpenCV开发笔记(七十二):红胖子8分钟带你使用opencv+dnn+tensorFlow识别物体的更多相关文章
- OpenCV开发笔记(七十三):红胖子8分钟带你使用opencv+dnn+yolov3识别物体
前言 级联分类器的效果并不是很好,准确度相对深度学习较低,上一章节使用了dnn中的tensorflow,本章使用yolov3模型,识别出具体的分类. Demo 320x320,置信度0 ...
- OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(五十六):红胖子8分钟带你深入了解多种图形拟合逼近轮廓(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(六十四):红胖子8分钟带你深入了解SURF特征点(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- OpenCV开发笔记(七十一):红胖子8分钟带你深入级联分类器训练
前言 红胖子,来也! 做图像处理,经常头痛的是明明分离出来了(非颜色的),分为几块区域,那怎么知道这几块区域到底哪一块是我们需要的,那么这部分就涉及到需要识别了. 识别可以自己写模板匹配.特征 ...
- OpenCV开发笔记(五十五):红胖子8分钟带你深入了解Haar、LBP特征以及级联分类器识别过程(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- 树莓派开发笔记(十二):入手研华ADVANTECH工控树莓派UNO-220套件(一):介绍和运行系统
前言 树莓派也可以做商业应用,工业控制,其稳定性和可靠性已经得到了验证,故而工业控制,一些停车场等场景也有采用树莓派作为主控的,本片介绍了研华ADVANTECH的树莓派套件组UNO-220-P4N ...
- .net开发笔记(十二) 设计时与运行时的区别(续)
上一篇博客详细讲到了设计时(DesignTime)和运行时(RunTime)的概念与区别,不过没有给出实际的Demo,今天整理了一下,做了一个例子,贴出来分享一下,巩固前一篇博客讲到的内容. 简单回顾 ...
随机推荐
- JAVA | Java 解决跨域问题
JAVA | Java 解决跨域问题 Table of Contents 引言 什么是跨域(CORS) 什么情况会跨域 解决方案 前端解决方案 后端解决方案 具体方式 一.使用Filter方式进行设置 ...
- Redis安装即python使用
一:简介 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted ...
- 容器云平台No.2~kubeadm创建高可用集群v1.19.1
通过kubernetes构建容器云平台第二篇,最近刚好官方发布了V1.19.0,本文就以最新版来介绍通过kubeadm安装高可用的kubernetes集群. 市面上安装k8s的工具很多,但是用于学习的 ...
- luogu 3376 最小费用最大流 模板
类似EK算法,只是将bfs改成spfa,求最小花费. 为什么可以呢,加入1-3-7是一条路,求出一个流量为40,那么40*f[1]+40*f[2]+40*f[3],f[1]是第一条路的单位费用,f[2 ...
- (转载)Altium Designer 17 (AD17)
转载自:http://blog.csdn.net/qq_29350001/article/details/52199356 以前是使用DXP2004来画图的,后来转行.想来已经有一年半的时间没有画过了 ...
- MySQL表关系总结
一对多关系 : 一对多关系是关系数据库中两个表之间的一种关系,该关系中第一个表中的单个行可以与第二个表中的一个或多个行相关,但第二个表中的一个行只可以与第一个表中的一个行相关. 一对多关系,一般是一 ...
- Android和。net加密。
来源: Github: https://github.com/Pavel-Durov/CodeProject-Android-and-NET-Encryption 直接: Source Code (A ...
- 在阿里云上搭建私有GIT仓库
在阿里云上搭建私有GIT仓库 年轻人就得好好学习,不能这么颓废 最近做项目练练手,用到了github, 但是github访问速度是真的慢啊,下载项目,下载一天了.所以呢,我是个成熟的人了,只好自己搭建 ...
- 正式班D7
2020.10.13星期二 正式班D7 一.上节课复习 Linux发展 批处理系统 多道技术 分时操作系统 multics->Unix->minix->Linux(如Redhat.c ...
- MeteoInfoLab脚本示例:中文处理
在脚本中使用中文需要指明是unicode编码,即在含有中文的字符串前加u,比如:u'中文'.还需要将字体指定为一种中文字体.详见下面的例子.脚本程序: x = [1,2,3,4] y = [1,4,9 ...