[

]

I

V

[矩阵乘法]裴波拉契数列IV

[矩阵乘法]裴波拉契数列IV

Description

求数列f[n]=f[n-2]+f[n-1]+n+1的第N项,其中f[1]=1,f[2]:=1.


Input

n(1<n<231-1)


Output

一个数为裴波拉契数列的第n项mod 9973;


Sample Input

10000


Sample Output

4399


题目解析

对于为什么用矩阵乘法来做,详见博客斐波那契数列II

关于递推式略, 详见博客斐波那契数列III,并请独自尝试通过类比来推递推式。

然后可以构造出一个

4

4

4 * 4

4∗4的矩阵

T

T

T

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

1

\begin{vmatrix} 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 1\\ \end{vmatrix}

∣∣∣∣∣∣∣∣​0100​1111​0011​0001​∣∣∣∣∣∣∣∣​


Code

#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std; int nt;
const int MOD = 9973; struct matrix
{
int n, m;
int t[10][10];
}t1, t2, t3; matrix operator *(matrix t, matrix r)
{
matrix c;
c.n = t.n, c.m = r.m;
for (int i = 1; i <= c.n; ++ i)
for (int j = 1; j <= c.m; ++ j)
c.t[i][j]=0;
for (int k = 1; k <= t.m; ++ k)
for (int i = 1; i <= t.n; ++ i)
for (int j = 1; j <= r.m; ++ j)
c.t[i][j] = (c.t[i][j] + t.t[i][k] * r.t[k][j] % MOD) % MOD;
return c;
} void rt (int k)
{
if (k == 1)
{
t2 = t1;
return;
}
rt (k / 2);
t2 = t2 * t2;
if (k & 1) t2 = t2 * t1;
} int main()
{
scanf ("%d", &nt);
if (nt == 1)
{
printf ("1");
return 0;
}
t3.n = 1;
t1.n = t1.m = t3.m = 4;
t1.t[1][1] = 0, t1.t[1][2] = 1, t1.t[1][3] = 0, t1.t[1][4] = 0;
t1.t[2][1] = 1, t1.t[2][2] = 1, t1.t[2][3] = 0, t1.t[2][4] = 0;
t1.t[3][1] = 0, t1.t[3][2] = 1, t1.t[3][3] = 1, t1.t[3][4] = 0;
t1.t[4][1] = 0, t1.t[4][2] = 1, t1.t[4][3] = 1, t1.t[4][4] = 1;
t3.t[1][1] = t3.t[1][2] = t3.t[1][4] = 1; t3.t[1][3] = 3;
rt (nt - 1);
t3 = t3 * t2;
printf ("%d", t3.t[1][1]);
return 0;
}

[矩阵乘法]斐波那契数列IV的更多相关文章

  1. [矩阵乘法]裴波拉契数列III

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I I [矩阵乘法]裴波拉契数列III [矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N ...

  2. [矩阵乘法]裴波拉契数列II

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...

  3. 矩阵乘法&&矩阵快速幂&&最基本的矩阵模型——斐波那契数列

    矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一 ...

  4. poj3070_斐波那契数列(Fibonacci)

    用矩阵求斐波那契数列,快速幂log(n),只用求最后4位(加和乘的运算中前面的位数无用) #include <stdio.h> #include <stdlib.h> int ...

  5. 斐波那契数列的生成 %1e8 后的结果

    方法一  用数组开,一般开到1e7,1e8 左右的数组就是极限了   对时间也是挑战 #include<bits/stdc++.h> using namespace std; ; int ...

  6. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  7. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  8. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  9. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

随机推荐

  1. js 监听ajax请求

    function hookSend(hook) { if (!XMLHttpRequest.prototype._oldSend) XMLHttpRequest.prototype._oldSend ...

  2. 可视化埋点 & XPath

    可视化埋点 & XPath https://www.w3.org/TR/xpath-full-text-30/ 数据的准确性 采集时机 数据发送策略 full XPath demo XML & ...

  3. NGK:APP一站式挖矿高收益项目

    NGK是10月中旬刚上线的公链项目,采用手机挖矿形式.NGK数字增益平台,200美金即可入场,收益可观,分为静态和动态两种,投资算力收益超高.邀请好友挖矿还有额外的返佣. NGK立志为所有人创造无差别 ...

  4. 观点纠正,yarn和npm对比,今天yarn仍然比npm快吗

    yarn和npm的区别和对比,网上很多了,不多说了. 只纠正一个观点:yarn仍然比npm快吗?不. 2016年,yarn刚刚发布,速度确实比npm快,于是网络上出现了好多推荐yarn的文章. 于是很 ...

  5. 初学c++,vc++6.0必备!

    文章首发 | 公众号:lunvey 作为一个纯粹的萌新,工作需要,刚接触到c++. 按照以往的经验,配置一个开发环境是首要的,其次便是边学边敲. c++入门书籍寻找了一堆,发现了一个共同点,在Wind ...

  6. C++算法代码——骨牌铺法

    题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1638 题目描述 输入 输入一个正整数,表示n. 输出 输出一个正整数,表示铺法. 样 ...

  7. dotnet core TargetFramework 解析顺序测试

    dotnet core TargetFramework 解析顺序测试 Intro 现在 dotnet 的 TargetFramework 越来越多,抛开 .NET Framework 不谈,如果一个类 ...

  8. MFC多文档程序启动无子窗口的实现

    刚学MFC的我们,肯定会从一个基本MFC程序开始. 而VC++6.0的MFC基础类提供了三种创建方式:单文档.多文档.对话框. 当我们创建多文档应用程序的时候,会自动启动一个子窗口. 在我们平时使用软 ...

  9. C# 使用 Index 和 Range 简化集合操作

    C# 使用 Index 和 Range 简化集合操作 Intro 有的语言数组的索引值是支持负数的,表示从后向前索引,比如:arr[-1] 从 C# 8 开始,C# 支持了数组的反向 Index,和 ...

  10. [计算机图形学]Blinn-Phong光照模型

    目录 一.前言 二.原理 三.代码 一.前言 Blinn-Phong光照模型以Phong模型为基础的,提供比Phong更柔和.更平滑的高光,而且由于Blinn-Phong的光照模型省去了计算反射光线的 ...