# -*- coding:utf-8 -*-

import os
import numpy as np
import torch
import cv2
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.utils.tensorboard import SummaryWriter
import torch.optim as optim
from matplotlib import pyplot as plt
import os
from PIL import Image
os.environ ['KMP_DUPLICATE_LIB_OK'] ='True'
import sys
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR)
fmap_block = list()
grad_block = list()
from model.lenet import LeNet
from tools.my_dataset import RMBDataset
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) torch.manual_seed(1) # 设置随机种子
rmb_label = {"1": 0, "100": 1} # 参数设置
MAX_EPOCH = 10
BATCH_SIZE = 16
LR = 0.01
log_interval = 10
val_interval = 1 output_dir = os.path.join(BASE_DIR, "..", "..", "Result", "backward_hook_cam") fmap_block = list()
input_block = list()
# ============================ step 1/5 数据 ============================ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
split_dir = os.path.abspath(os.path.join(BASE_DIR, "rmb_split"))
if not os.path.exists(split_dir):
raise Exception(r"数据 {} 不存在, 回到lesson-06\1_split_dataset.py生成数据".format(split_dir))
train_dir = os.path.join(split_dir, "train")
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225] def backward_hook(module, grad_in, grad_out):
grad_block.append(grad_out[0].detach()) def farward_hook(module, input, output):
fmap_block.append(output) def show_cam_on_image(img, mask, out_dir):
heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
path_cam_img = os.path.join(out_dir, "cam1.jpg")
path_raw_img = os.path.join(out_dir, "raw1.jpg")
if not os.path.exists(out_dir):
os.makedirs(out_dir)
print(cam)
cv2.imwrite(path_cam_img, np.uint8(255 * cam))
cv2.imwrite(path_raw_img, np.uint8(255 * img)) def comp_class_vec(ouput_vec, index=None):
"""
计算类向量
:param ouput_vec: tensor
:param index: int,指定类别
:return: tensor
"""
if not index:
index = np.argmax(ouput_vec.cpu().data.numpy())
else:
index = np.array(index)
index = index[np.newaxis, np.newaxis]
index = torch.from_numpy(index)
one_hot = torch.zeros(1, 2).scatter_(1, index, 1)
one_hot.requires_grad = True
class_vec = torch.sum(one_hot * outputx) # one_hot = 11.8605
return class_vec def gen_cam(feature_map, grads):
"""
依据梯度和特征图,生成cam
:param feature_map: np.array, in [C, H, W]
:param grads: np.array, in [C, H, W]
:return: np.array, [H, W]
"""
cam = np.zeros(feature_map.shape[1:], dtype=np.float32) # cam shape (H, W) weights = np.mean(grads, axis=(1, 2)) # for i, w in enumerate(weights):
cam += w * feature_map[i, :, :] cam = np.maximum(cam, 0)
cam = cv2.resize(cam, (64, 64))
cam -= np.min(cam)
cam /= np.max(cam) return cam train_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.RandomCrop(64, padding=4),
transforms.RandomGrayscale(p=0.8),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
]) valid_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
]) # 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform) # 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # ============================ step 2/5 模型 ============================ net = LeNet(classes=2)
net.initialize_weights() # ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss() # 选择损失函数 # ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 设置学习率下降策略 # ============================ step 5/5 训练 ============================
train_curve = list() iter_count = 0 for epoch in range(MAX_EPOCH):
fmap_dict = dict() loss_mean = 0.
correct = 0.
total = 0.
net.train()
for i, data in enumerate(train_loader):
iter_count += 1
# forward
inputs, labels = data
outputs = net(inputs)
# backward optimizer.zero_grad()
loss = criterion(outputs, labels)
loss.backward() # update weights
optimizer.step()
# 统计分类情况
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).squeeze().sum().numpy()
# 打印训练信息
loss_mean += loss.item()
train_curve.append(loss.item())
if (i+1) % log_interval == 0:
loss_mean = loss_mean / log_interval
print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total))
loss_mean = 0. scheduler.step() # 更新学习率
img = cv2.imread('100.jpg', 1) # H*W*C
x = Image.open('100.jpg').convert('RGB')
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
valid_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
x = valid_transform(x)
x.unsqueeze_(0) net.conv2.register_forward_hook(farward_hook)
net.conv2.register_backward_hook(backward_hook)
outputx = net(x)
net.zero_grad()
class_loss = comp_class_vec(outputx)
class_loss.backward()
grads_val = grad_block[0].cpu().data.numpy().squeeze()
fmap = fmap_block[0].cpu().data.numpy().squeeze()
cam = gen_cam(fmap, grads_val)
img_show = np.float32(cv2.resize(img, (64, 64))) / 255
show_cam_on_image(img_show, cam, output_dir)



[个人总结]利用grad-cam实现人民币分类的更多相关文章

  1. 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...

  2. 【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ------------------------------------------- ...

  3. NLP(二十二)利用ALBERT实现文本二分类

      在文章NLP(二十)利用BERT实现文本二分类中,笔者介绍了如何使用BERT来实现文本二分类功能,以判别是否属于出访类事件为例子.但是呢,利用BERT在做模型预测的时候存在预测时间较长的问题.因此 ...

  4. 利用RNN进行中文文本分类(数据集是复旦中文语料)

    利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1.训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词 ...

  5. 利用CNN进行中文文本分类(数据集是复旦中文语料)

    利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 上一节我们利用了RNN(GRU)对中文文本进行了分类,本节我们将继续使用 ...

  6. 利用AdaBoost元算法提高分类性能

    当做重要决定时,大家可能都会吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法背后的思路.元算法是对其他算法进行组合的一种方式. 自举汇聚法(bootstrap aggr ...

  7. 【Python与机器学习】:利用Keras进行多类分类

    多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采 ...

  8. 利用Spark-mllab进行聚类,分类,回归分析的代码实现(python)

    Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力.而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法.Python具有Spark的API.需要注意的是,Spark中 ...

  9. 利用logistic回归解决多分类问题

    利用logistic回归解决手写数字识别问题,数据集私聊. from scipy.io import loadmat import numpy as np import pandas as pd im ...

随机推荐

  1. Codeforces Round #646 (Div. 2) 题解 (ABCDE)

    目录 A. Odd Selection B. Subsequence Hate C. Game On Leaves D. Guess The Maximums E. Tree Shuffling ht ...

  2. hoj2430 Counting the algorithms

    My Tags   (Edit)   Source : mostleg   Time limit : 1 sec   Memory limit : 64 M Submitted : 725, Acce ...

  3. URAL - 1029 dp

    题意: n层楼,每层楼有m个房间.找出一个路径从第一层到达第M层,使得路径上的所有数的和是所有可达路径中最小的,每次上到下一层以后就不能再上去,依次输出路径上的各点在所在层的列数. 题解: 参考链接: ...

  4. 【转】Dockerfile

    1. 关于docker build  docker build可以基于Dockerfile和context打包出一个镜像,其中context是一系列在PATH或URL中指定的位置中的文件(contex ...

  5. 2.API的理解和使用

    标题 : 2.API的理解和使用 目录 : Redis 序号 : 2 ​ zset的成员是唯一的,但分数(score)却可以重复. ​ 有序集合的内部编码 1.ziplist(压缩列表):当有序集合的 ...

  6. KEIL5 使用STM32 官方例程

    1. 安装keil5,破解 网上很多安装包/教程,跳过 2.下载官方固件库 https://www.st.com/content/st_com/en.html 在这里找微处理器,STM32 stand ...

  7. sql-libs(5)

    直接只用floor报错注入  或者 update即可

  8. WSL2+Terminal+VScode配置调试

    最近几天一直想找个方法把VMware虚拟机和远程连接工具MobaXterm这一组配合替换掉,因为每次开启虚拟机操作Ubuntu都需要占用很大的内存,而且要等好久好久才能开启!!!后面还要使用MobaX ...

  9. 部署gitlab-01

    Gitlab Server 部署 1.环境配置 关闭防火墙.SELinux 开启邮件服务 systemctl start postfix systemctl enable postfix#ps:不开去 ...

  10. 网站备案查询/ICP备案查询网

    网站备案查询/ICP备案查询网 互联网站备案信息全国公安机关互联网站安全服务平台http://www.beian.gov.cn/portal/index 1 http://www.miitbeian. ...