[个人总结]利用grad-cam实现人民币分类
# -*- coding:utf-8 -*-
import os
import numpy as np
import torch
import cv2
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.utils.tensorboard import SummaryWriter
import torch.optim as optim
from matplotlib import pyplot as plt
import os
from PIL import Image
os.environ ['KMP_DUPLICATE_LIB_OK'] ='True'
import sys
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR)
fmap_block = list()
grad_block = list()
from model.lenet import LeNet
from tools.my_dataset import RMBDataset
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
torch.manual_seed(1) # 设置随机种子
rmb_label = {"1": 0, "100": 1}
# 参数设置
MAX_EPOCH = 10
BATCH_SIZE = 16
LR = 0.01
log_interval = 10
val_interval = 1
output_dir = os.path.join(BASE_DIR, "..", "..", "Result", "backward_hook_cam")
fmap_block = list()
input_block = list()
# ============================ step 1/5 数据 ============================
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
split_dir = os.path.abspath(os.path.join(BASE_DIR, "rmb_split"))
if not os.path.exists(split_dir):
raise Exception(r"数据 {} 不存在, 回到lesson-06\1_split_dataset.py生成数据".format(split_dir))
train_dir = os.path.join(split_dir, "train")
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
def backward_hook(module, grad_in, grad_out):
grad_block.append(grad_out[0].detach())
def farward_hook(module, input, output):
fmap_block.append(output)
def show_cam_on_image(img, mask, out_dir):
heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
path_cam_img = os.path.join(out_dir, "cam1.jpg")
path_raw_img = os.path.join(out_dir, "raw1.jpg")
if not os.path.exists(out_dir):
os.makedirs(out_dir)
print(cam)
cv2.imwrite(path_cam_img, np.uint8(255 * cam))
cv2.imwrite(path_raw_img, np.uint8(255 * img))
def comp_class_vec(ouput_vec, index=None):
"""
计算类向量
:param ouput_vec: tensor
:param index: int,指定类别
:return: tensor
"""
if not index:
index = np.argmax(ouput_vec.cpu().data.numpy())
else:
index = np.array(index)
index = index[np.newaxis, np.newaxis]
index = torch.from_numpy(index)
one_hot = torch.zeros(1, 2).scatter_(1, index, 1)
one_hot.requires_grad = True
class_vec = torch.sum(one_hot * outputx) # one_hot = 11.8605
return class_vec
def gen_cam(feature_map, grads):
"""
依据梯度和特征图,生成cam
:param feature_map: np.array, in [C, H, W]
:param grads: np.array, in [C, H, W]
:return: np.array, [H, W]
"""
cam = np.zeros(feature_map.shape[1:], dtype=np.float32) # cam shape (H, W)
weights = np.mean(grads, axis=(1, 2)) #
for i, w in enumerate(weights):
cam += w * feature_map[i, :, :]
cam = np.maximum(cam, 0)
cam = cv2.resize(cam, (64, 64))
cam -= np.min(cam)
cam /= np.max(cam)
return cam
train_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.RandomCrop(64, padding=4),
transforms.RandomGrayscale(p=0.8),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
valid_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# ============================ step 2/5 模型 ============================
net = LeNet(classes=2)
net.initialize_weights()
# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss() # 选择损失函数
# ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 设置学习率下降策略
# ============================ step 5/5 训练 ============================
train_curve = list()
iter_count = 0
for epoch in range(MAX_EPOCH):
fmap_dict = dict()
loss_mean = 0.
correct = 0.
total = 0.
net.train()
for i, data in enumerate(train_loader):
iter_count += 1
# forward
inputs, labels = data
outputs = net(inputs)
# backward
optimizer.zero_grad()
loss = criterion(outputs, labels)
loss.backward()
# update weights
optimizer.step()
# 统计分类情况
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).squeeze().sum().numpy()
# 打印训练信息
loss_mean += loss.item()
train_curve.append(loss.item())
if (i+1) % log_interval == 0:
loss_mean = loss_mean / log_interval
print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch, MAX_EPOCH, i+1, len(train_loader), loss_mean, correct / total))
loss_mean = 0.
scheduler.step() # 更新学习率
img = cv2.imread('100.jpg', 1) # H*W*C
x = Image.open('100.jpg').convert('RGB')
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
valid_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
x = valid_transform(x)
x.unsqueeze_(0)
net.conv2.register_forward_hook(farward_hook)
net.conv2.register_backward_hook(backward_hook)
outputx = net(x)
net.zero_grad()
class_loss = comp_class_vec(outputx)
class_loss.backward()
grads_val = grad_block[0].cpu().data.numpy().squeeze()
fmap = fmap_block[0].cpu().data.numpy().squeeze()
cam = gen_cam(fmap, grads_val)
img_show = np.float32(cv2.resize(img, (64, 64))) / 255
show_cam_on_image(img_show, cam, output_dir)
[个人总结]利用grad-cam实现人民币分类的更多相关文章
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- 【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ------------------------------------------- ...
- NLP(二十二)利用ALBERT实现文本二分类
在文章NLP(二十)利用BERT实现文本二分类中,笔者介绍了如何使用BERT来实现文本二分类功能,以判别是否属于出访类事件为例子.但是呢,利用BERT在做模型预测的时候存在预测时间较长的问题.因此 ...
- 利用RNN进行中文文本分类(数据集是复旦中文语料)
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1.训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词 ...
- 利用CNN进行中文文本分类(数据集是复旦中文语料)
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 上一节我们利用了RNN(GRU)对中文文本进行了分类,本节我们将继续使用 ...
- 利用AdaBoost元算法提高分类性能
当做重要决定时,大家可能都会吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法背后的思路.元算法是对其他算法进行组合的一种方式. 自举汇聚法(bootstrap aggr ...
- 【Python与机器学习】:利用Keras进行多类分类
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采 ...
- 利用Spark-mllab进行聚类,分类,回归分析的代码实现(python)
Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力.而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法.Python具有Spark的API.需要注意的是,Spark中 ...
- 利用logistic回归解决多分类问题
利用logistic回归解决手写数字识别问题,数据集私聊. from scipy.io import loadmat import numpy as np import pandas as pd im ...
随机推荐
- Python中“*”和“**”的用法 || yield的用法 || ‘$in’和'$nin' || python @property的含义
一.单星号 * 采用 * 可将列表或元祖中的元素直接取出,作为随机数的上下限: import random a = [1,4] print(random.randrange(*a)) 或者for循环输 ...
- 1.初识Redis
作者 微信:tangy8080 电子邮箱:914661180@qq.com 更新时间:2019-08-14 20:35:36 星期三 欢迎您订阅和分享我的订阅号,订阅号内会不定期分享一些我自己学习过程 ...
- docker理论题-02
1.什么是namespace? 答:名称空间,作用隔离容器 2.namespace隔离有那些? 答:ipc:共享内存.消息队列 mnt:挂载点 net:网络栈 uts:域,主机名 user:用户,组 ...
- C++动态申请一维数组和二维数组
在平时的编程过程中,我们经常会用到数组来存放数据,我们可以直接申请足够大空间的数组来保证数组访问不会越界,但是即便这样,我们依然不能保证空间分配的足够,而且非常的浪费空间.有时候我们需要根据上面得到的 ...
- 洛谷p1886滑动窗口最大最小值 双单调队列
#include <iostream> #include <cstdio> using namespace std; int n,k,a[1000007],q1[2000007 ...
- 如何在没有显示器的情况下,查看 Raspberry Pi 3的 IP 信息(Raspberry Pi 3 ,IP Address)
1. 如何在没有显示器的情况下,查看 Raspberry Pi 3的 IP 信息(Raspberry Pi 3 ,IP Address) 1 IP Address Any device connect ...
- shit LeetCode interview Question
shit LeetCode interview Question https://leetcode.com/interview/1/ 有点晕,啥意思,没太明白,到底是要按什么排序呀? 去掉 标识符 不 ...
- HTML5 Canvas 2D library All In One
HTML5 Canvas 2D library All In One https://github.com/search?q=Javascript+Canvas+Library https://git ...
- angular-2-tutorial-2017
# angular-2-tutorial-2017https://www.sitepoint.com/understanding-component-architecture-angular/http ...
- blogs & cnblogs
blogs & cnblogs https://www.cnblogs.com/xgqfrms https://i.cnblogs.com/diaries https://i.cnblogs. ...