【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS
“目标检测“是当前计算机视觉和机器学习领域的研究热点。从Viola-Jones Detector、DPM等冷兵器时代的智慧到当今RCNN、YOLO等深度学习土壤孕育下的GPU暴力美学,整个目标检测的发展可谓是计算机视觉领域的一部浓缩史。整个目标检测的发展历程已经总结在了下图中:(非常感谢mooc网提供的学习视频:https://coding.imooc.com/class/298.html)

图 1. 目标检测发展历程图
可以看出,在2012年之前,在目标检测领域还是以传统手工特征的检测算法为主,但是随着卷积神经网络(CNN)在2012年的兴起,目标检测开始了在深度学习下的暴力美学。在深度学习下,目标检测的效果比传统手工特征效果好太多。直至今日,基于深度学习的检测算法依然是目标检测的主流。
虽然深度学习算法在目标检测中比传统手工特征优秀太多,但是我依然不能忘记传统算法给我们带来的帮助,本文记录了我学习目标检测算法的开始,深入讲述一下传统算法在目标检测的原理和效果。
人脸检测算法 - Viola-Jones
2004年Paul Viola和MichaelJones在CVPR上发表了一篇跨时代意义的文章《Robust Real-Time Face Detection》,后人将文章中的人脸检测算法称之为Viola-Jones(VJ)检测器。VJ检测器在17年前极为有限的计算资源下第一次实现了人脸的实时检测,速度是同期检测算法的几十甚至上百倍,极大程度地推动了人脸检测应用商业化的进程。VJ检测器的思想深刻地影响了目标检测领域至少10年的发展。
VJ检测器采用了最传统也是最保守的目标检测手段——滑动窗口检测,即在图像中的每一个尺度和每一个像素位置进行遍历,逐一判断当前窗口是否为人脸目标。这种思路看似简单,实则计算开销巨大。VJ人脸检测之所以器能够在有限的计算资源下实现实时检测,其中有三个关键要素:多尺度Haar特征的快速计算,有效的特征选择算法以及高效的多阶段处理策略。
在多尺度Harr特征快速计算方面,VJ检测器使用积分图对特征提取进行加速。积分图可以使特征计算量与窗口的尺寸无关,同时也避免了处理多尺度问题时建图像金字塔这一耗时的过程。
在特征选择算法方面,与传统意义上的手工特征不同的是,VJ检测器中使用的Harr特征并非是人为事先设计好的。VJ检测器使用了过完备的随机Haar特征,并通过Adaboost算法从一个巨大的特征池(约180k维)中进行特征选择,选取出对于人脸检测最有用的极少数几种特征从而降低不必要的计算开销。
在多阶段处理方面,作者提出了级联决策结构,并将其形象地称之为“瀑布”(Cascades)。整个检测器由多级Adaboost决策器组成,每一级决策器又由若干个弱分类决策桩(Decision Stump)组成。瀑布的核心思想是将较少的计算资源分配在背景窗口,而将较多的计算资源分配在目标窗口:如果某一级决策器将当前窗口判定为背景,则无需后续决策就可继续开始下一个窗口的判断。
| 积分图 | |
| Adaboost人脸检测器 | 特征选择+分类器融合。对adaboost的思想进行合理改造,一个haar特征对应一个弱分类器,弱特征组合成强特征,弱分类器组合成强分类器。 |
| 级联结构 | 由粗到精的检测策略,加速的同时又能保证精度。先在前期用快速算法把大量非人脸去掉,平衡后期慢速的更精细分类开销。 |
行人检测算法 - HOG+SVM
参考文献:
经典计算机视觉论文笔记——《Robust Real-Time Face Detection》
【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS的更多相关文章
- 第十八节、基于传统图像处理的目标检测与识别(HOG+SVM附代码)
其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象 ...
- kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...
- 第十九节、基于传统图像处理的目标检测与识别(词袋模型BOW+SVM附代码)
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视 ...
- 基于 MeanShift 算法的目标跟踪问题研究
参考:http://www.cnblogs.com/tornadomeet/archive/2012/03/15/2398769.html MeanShift 算法作为一种基于特征的跟踪方法,基本思想 ...
- 小小知识点(四十七)——发送端已知CSI,基于注水算法的功率分配方法,实现功率受限下的信道容量最大化
1. 注水算法的使用条件和推导 注水算法是根据某种准则,并根据信道状况对发送功率进行自适应分配,通常是信道状况好的时刻,多分配功率,信道差的时候,少分配功率,从而最大化传输速率.实现功率的“注水”分配 ...
- OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...
- #研发解决方案#基于Apriori算法的Nginx+Lua+ELK异常流量拦截方案
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档 ...
- 基于Apriori算法的Nginx+Lua+ELK异常流量拦截方案 郑昀 基于杨海波的设计文档(转)
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档 ...
- #Deep Learning回顾#之基于深度学习的目标检测(阅读小结)
原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主 ...
随机推荐
- PHP AES加密封装类
简介 PHP AES 加密解密常用封装类 使用方式 $key = 123; $aes = new Aes($key); $data = ['a' => 1]; $aes->decrypt( ...
- JDK 15已发布,你所要知道的都在这里!
JDK 15已经在2020年9月15日发布!详情见 JDK 15 官方计划.下面是对 JDK 15 所有新特性的详细解析! 官方计划 2019/12/12 Rampdown Phase One (fo ...
- 老猿学5G扫盲贴:3GPP规范中部分与计费相关的规范序列文档
专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 经咨询华为公司的相关专家,以及结合3GPP目录下载 ...
- linux c++ 内存泄漏检测工具:AddressSanitizer(ASan)
1.介绍 AddressSanitizer(ASan),该工具为gcc自带,4.8以上版本均可以使用. 2.使用 编译的方式很简单,只需要添加 -fsanitize=address -g 即可,如 g ...
- GYM101889J Jumping frog
突然发现题刷累了写写题解还是满舒服的 题目大意: 给你一个只包含 \(R\) , \(P\) ,长度为 \(n\) 的字符串( \(3\le n\le 10^5\) ).你可以选择一个跳跃距离 \(l ...
- STL——容器(Set & multiset)的概念和特点
1. Set 和 multiset 的概念 set 和 multiset 是一个集合容器,其中 set 所包含的元素是唯一的,集合中的元素按一定的顺序排列.set 采用红黑树变体的数据结构实现,红黑树 ...
- 【Ubantu 系统显示ip为127.0.0.1 解决办法】
现象:Ubantu : >>>ifconfig Link encap:以太网 硬件地址****************** inet 地址:127.0.0. ...
- SpringBoot整合Swagger2详细教程
1. 简介 随着前后端分离开发模式越来越流行,编写接口文档变成了开发人员非常头疼的事.而Swagger是一个规范且完整的web框架,用于生成.描述.调用可视化的RESTful风格的在线接口文档,并 ...
- 容器编排系统之ReplicaSet和Deployment控制器
前文我们了解了k8s上的Pod资源的生命周期.健康状态和就绪状态探测以及资源限制相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/14143610.htm ...
- 浅谈 FHQ-Treap
关于FHQ-Treap --作者:BiuBiu_Miku 可能需要的前置知识: 一.树形结构的了解: 树形,顾名思义,就是像树一样有很多分叉口,而这里以二叉 ...