python对离散数据进行编码
机器学习中会遇到一些离散型数据,无法带入模型进行训练,所以要对其进行编码,常用的编码方式有两种:
1、特征不具备大小意义的直接独热编码(one-hot encoding)
2、特征有大小意义的采用映射编码(map encoding)
两种编码在sklearn.preprocessing包里有实现方法
映射编码就是用一个字典指定不同离散型数据对应哪些数字
import pandas as pd
df = pd.DataFrame([
['green', 'M', 10.1, 'label1'],
['red', 'L', 13.5, 'label2'],
['blue', 'XL', 15.3, 'label2']])
# color、label不具备大小含义,size具有大小意义
df.columns = ['color', 'size', 'length', 'label']
size_mapping = {
'XL': 3,
'L': 2,
'M': 1}
df['size'] = df['size'].map(size_mapping)
one-hot编码有两种形式:
1.one-hot编码,又称独热编码、一位有效编码。其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。举个例子,假设我们有四个样本(行),每个样本有三个特征(列),如图:
上图中我们已经对每个特征进行了普通的数字编码:我们的feature_1有两种可能的取值,比如是男/女,这里男用1表示,女用2表示。那么one-hot编码是怎么搞的呢?我们再拿feature_2来说明:
这里feature_2 有4种取值(状态),我们就用4个状态位来表示这个特征,one-hot编码就是保证每个样本中的单个特征只有1位处于状态1,其他的都是0。
对于2种状态、三种状态、甚至更多状态都是这样表示,所以我们可以得到这些样本特征的新表示:
one-hot编码将每个状态位都看成一个特征。对于前两个样本我们可以得到它的特征向量分别为
one-hot在提取文本特征上的应用
one hot在特征提取上属于词袋模型(bag of words)。关于如何使用one-hot抽取文本特征向量我们通过以下例子来说明。假设我们的语料库中有三段话:
我爱中国
爸爸妈妈爱我
爸爸妈妈爱中国
我们首先对预料库分离并获取其中所有的词,然后对每个此进行编号:
1 我; 2 爱; 3 爸爸; 4 妈妈;5 中国
然后使用one hot对每段话提取特征向量:
;
;
因此我们得到了最终的特征向量为
我爱中国 -> 1,1,0,0,1
爸爸妈妈爱我 -> 1,1,1,1,0
爸爸妈妈爱中国 -> 0,1,1,1,1
优缺点分析
优点:一是解决了分类器不好处理离散数据的问题,二是在一定程度上也起到了扩充特征的作用(上面样本特征数从3扩展到了9)
缺点:在文本特征表示上有些缺点就非常突出了。首先,它是一个词袋模型,不考虑词与词之间的顺序(文本中词的顺序信息也是很重要的);其次,它假设词与词相互独立(在大多数情况下,词与词是相互影响的);最后,它得到的特征是离散稀疏的。
one-hot的基本思想:将离散型特征的每一种取值都看成一种状态,若你的这一特征中有N个不相同的取值,那么我们就可以将该特征抽象成N种不同的状态,one-hot编码保证了每一个取值只会使得一种状态处于“激活态”,也就是说这N种状态中只有一个状态位值为1,其他状态位都是0。举个例子,假设我们以学历为例,我们想要研究的类别为小学、中学、大学、硕士、博士五种类别,我们使用one-hot对其编码就会得到:
2.dummy encoding,哑变量编码直观的解释就是任意的将一个状态位去除。还是拿上面的例子来说,我们用4个状态位就足够反应上述5个类别的信息,也就是我们仅仅使用前四个状态位 [0,0,0,0] 就可以表达博士了。只是因为对于一个我们研究的样本,他已不是小学生、也不是中学生、也不是大学生、又不是研究生,那么我们就可以默认他是博士,是不是。(额,当然他现实生活也可能上幼儿园,但是我们统计的样本中他并不是,^-^)。所以,我们用哑变量编码可以将上述5类表示成:
dummy encoding在pandas中有get_dummies()方法可以实现
python对离散数据进行编码的更多相关文章
- 利用 pandas 进行数据的预处理——离散数据哑编码、连续数据标准化
数据的标准化 数据标准化就是将不同取值范围的数据,在保留各自数据相对大小顺序不变的情况下,整体映射到一个固定的区间中.根据具体的实现方法不同,有的时候会映射到 [ 0 ,1 ],有时映射到 0 附近的 ...
- python --- 06 小数据池 编码
一.小数据池, id() 进行缓存 1.小数据池针对的是: int, str, bool 2.在py文件中几乎所有的字符串都会缓存. 在cmd命令窗口中几乎都不会缓存 不同的解释器有不同 ...
- Python实现——决策树实例(离散数据/香农熵)
决策树的实现太...繁琐了. 如果只是接受他的原理的话还好说,但是要想用代码去实现比较糟心,目前运用了<机器学习实战>的代码手打了一遍,决定在这里一点点摸索一下该工程. 实例的代码在使用上 ...
- Python分析离散心率信号(下)
Python分析离散心率信号(下) 如何使用动态阈值,信号过滤和离群值检测来改善峰值检测. 一些理论和背景 到目前为止,一直在研究如何分析心率信号并从中提取最广泛使用的时域和频域度量.但是,使用的信号 ...
- 使用Python解析JSON数据的基本方法
这篇文章主要介绍了使用Python解析JSON数据的基本方法,是Python入门学习中的基础知识,需要的朋友可以参考下: ----------------------------------- ...
- 详解Google-ProtoBuf中结构化数据的编码
本文的主要内容是google protobuf中序列化数据时用到的编码规则,但是,介绍具体的编码规则之前,我觉得有必要先简单介绍一下google protobuf.因此,本文首先会介绍一些google ...
- python标准库之字符编码详解
codesc官方地址:https://docs.python.org/2/library/codecs.html 相关帮助:http://www.cnblogs.com/huxi/archive/20 ...
- 用python处理文本数据 学到的一些东西
最近写了一个python脚本,用TagMe的api标注文本,并解析返回的json数据.在这个过程中遇到了很多问题,学到了一些新东西,总结一下. 1. csv文件处理 csv是一种格式化的文件,由行和列 ...
- Windows下Python读取GRIB数据
之前写了一篇<基于Python的GRIB数据可视化>的文章,好多博友在评论里问我Windows系统下如何读取GRIB数据,在这里我做一下说明. 一.在Windows下Python为什么无法 ...
随机推荐
- Codeforces Round #677 (Div. 3)
F. Zero Remainder Sum || dp #include <cstdio> #include <algorithm> #include <cstring& ...
- AndroidStudio中获得的VersionCode一直为1和VersionName一直为1.0
因为AndroidStudio把versionCode和versionName的维护放到了build.gradle中.
- 【C++】C++之Lambda表达式
目录 一.前言 二.Lambda表达式格式说明 2.1 完整的Lambda表达式格式 2.2 常见的Lambda表达式格式 2.3 lambda 表达式捕获列表 三.示例 3.1 STL的sort函数 ...
- 全文检索django-haystack+jieba+whoosh
全文检索里的组件简介 1.什么是haystack? 1. haystack是django的开源搜索框架,该框架支持Solr,Elasticsearch,Whoosh, *Xapian*搜索引擎,不用更 ...
- 赶紧收藏吧!MyBatis-Plus万字长文图解笔记,错过了这个村可就没这个店了
简介 MyBatis-Plus(简称 MP)是一个 MyBatis的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生 愿景 我们的愿景是成为 MyBatis 最好的搭档 ...
- 什么是Python迭代器?
迭代器(Iterator):迭代器可以看作是一个特殊的对象,每次调用该对象时会返回自身的下一个元素,从实现上来看,一个迭代器对象必须是定义了__iter__()方法和next()方法的对象. Pyth ...
- Docker部署CTF综合性靶场,定时刷新环境
部署如DVWA或upload-labs这类综合性靶场的时候,虽然是使用Docker环境,设置好权限后容器被击穿的问题不需要考虑,但担心部分选手修改了题目环境,比如一直XSS弹窗,所以想要编写脚本每天定 ...
- Java程序员普遍存在的面试问题以及应对之道(新书第一章节摘录)
其实大多数Java开发确实能胜任日常的开发工作,但不少候选人却无法在面试中打动面试官.因为要在短时间的面试中全面展示自己的实力,这很需要技巧,而从当前大多数Java开发的面试现状来看,会面试的候选人不 ...
- CSS绘制正五角星原理(数学模型)
尽管网上有很多CSS绘制五角星的代码案例,但是对于初学者来说可以拿来移植使用,但是在不明白其原理的情况下,进行修改移植就比较困难了.譬如想要将五角星尺寸进行缩小或者放大等设计,就需要对原代码相关数据进 ...
- TMOOC 1969 开锁
update on 2020.2.28 时隔近日重新想这道题,其实复杂度正确的解法是 可持久化 01 Trie. 考虑对于每一个 \(a[i]\),考虑能将它作为最大值的最大包容区间 \([l, r] ...