积性函数与完全积性函数

积性函数

若一个数论函数\(f\)满足当\(gcd(n,m)=1\)时,\(f(nm)=f(n)f(m)\)

则称\(f\)为积性函数

一些常见的积性函数

完全积性函数

若一个积性函数函数\(f\)满足当\(gcd(n,m)\ne1\)时,也有\(f(nm)=f(n)f(m)\)

则称\(f\)为完全积性函数

狄利克雷卷积

定义两个数论函数的狄利克雷卷积\(*\)

若\(t=f*g\)

\[t(n)=\sum\limits_{i|n}f(i)g(\frac{n}{i})
\]

等价于

\[t(n)=\sum\limits_{ij=n}f(i)g(j)
\]

狄利克雷卷积有以下性质(两个数论函数相等,是指两个函数的每一项都相等):

  1. 交换律 \(f*g=g*f\)
  2. 结合律 \(f*(g*h)=(f*g)*h\)
  3. 分配律 \(f*h+g*h=(f+g)*h\)
  4. 没有名字\((xf)*g=x(f*g)\)
  5. 单位元\(\epsilon*f=f\) ,其中\(\epsilon(n)=[n==1]\)
  6. 逆元:对于每一个\(f(1)≠0\)的函数\(f\),都有\(f∗g=ϵ\)

讨论一下第六个结论,如何求一个函数的逆呢?

只需要定义

\[g(n)=\frac{1}{f(1)}\left([n==1]-\sum\limits_{i|n,i\ne1}f(i)g(\frac{n}{i})\right)
\]

这样的话

\[\sum\limits_{i|n}f(i)g(\frac{n}{i})=f(1)g(n)+\sum\limits_{i|n,i\ne1}f(i)g(\frac{n}{i})=[n==1]
\]

几种比较常见的卷积关系:

\(\mu*1=\epsilon\) 【莫比乌斯反演】【\(\mu\)与\(1\)互为逆元】

\(\varphi*1=Id\)

\(\varphi=Id*\mu\)

\(d=1*1\)

\(1=\mu*d\)

莫比乌斯反演

我们定义\(1\)的逆是\(\mu\)

这样的话,如果\(g=f∗1\),就有\(f=f∗1∗\mu=g∗\mu\)

换句话说,就是

\[g(n)=\sum\limits_{d|n}f(d)\Leftrightarrow f(n)=\sum\limits_{d|n}\mu(\frac{n}{d})g(d)
\]

也可以这样子

\[g(d)=\sum\limits_{d|n}f(n)\Leftrightarrow f(d)=\sum\limits_{d|n}\mu(\frac{n}{d})*g(n)
\]

狄利克雷卷积 & 莫比乌斯反演的更多相关文章

  1. 狄利克雷卷积&莫比乌斯反演总结

    狄利克雷卷积&莫比乌斯反演总结 Prepare 1.\([P]\)表示当\(P\)为真时\([P]\)为\(1\),否则为\(0\). 2.\(a|b\)指\(b\)被\(a\)整除. 3.一 ...

  2. 狄利克雷卷积&莫比乌斯反演证明

    狄利克雷卷积简介 卷积这名字听起来挺学究的,今天学了之后发现其实挺朴实hhh. 卷积: "(n)"表示到n的一个范围. 设\(f,g\)是两个数论函数(也就是说,以自然数集为定义域 ...

  3. 狄利克雷卷积&莫比乌斯反演

    昨天刚说完不搞数论了,刚看到一个\(gcd\)的题目dalao用这个做了,虽然比正解麻烦,还是打算学一学了 数论函数: 数论函数的定义: 数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值 ...

  4. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  5. 我也不知道什么是"莫比乌斯反演"和"杜教筛"

    我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的 ...

  6. 【BZOJ3529】数表(莫比乌斯反演,树状数组)

    [BZOJ3529]数表(莫比乌斯反演,树状数组) 题解 首先不管\(A\)的范围的限制 要求的东西是 \[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))\] 其中\ ...

  7. 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

    [Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...

  8. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  9. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

随机推荐

  1. 数据可视化之PowerQuery篇(十八)Power BI数据分析应用:结构百分比分析法

    ​https://zhuanlan.zhihu.com/p/113113765 本文为星球嘉宾"海艳"的PowerBI数据分析工作实践系列分享之二,她深入浅出的介绍了PowerBI ...

  2. keyring源码加密解密函数分析

    Encrypt the page data contents. Page type can't be FIL_PAGE_ENCRYPTED, FIL_PAGE_COMPRESSED_AND_ENCRY ...

  3. C#中的char和string的使用简介

    char 字符 char代表一个Unicode字符,它是System.Char的别名 char someChar = 'a';//定义了一个字符 char newLine= '\n';//这是一个换行 ...

  4. 我和ABP vNext 的故事

    Abp VNext是Abp的.NET Core 版本,但它不仅仅只是代码重写了.Abp团队在过去多年社区和商业版本的反馈上做了很多的改进.包括性能.底层的框架设计,它融合了更多优雅的设计实践.不管你是 ...

  5. MySQL 高级性能优化架构 千万级高并发交易一致性系统基础

    一.MySQL体系架构 由图,可以看出MySQL最上层是连接组件.下面服务器是由连接池.管理服务和工具组件.SQL接口.查询解析器.查询优化器.缓存.存储引擎.文件系统组成. 1.连接池 管理.缓冲用 ...

  6. NCRE-Python考点

    NCRE-Python考点 作者:封亚飞本文不含 文件处理.面向对象程序设计.公共基础.计算生态希望各位可以批评指正Qq 64761294 由于图片上传不方便,需要真题的朋友可以加我的qq找我要pdf ...

  7. DP学习记录Ⅱ

    DP学习记录Ⅰ 以下为 DP 的优化. 人脑优化DP P5664 Emiya 家今天的饭 正难则反.考虑计算不合法方案.一个方案不合法一定存在一个主食,使得该主食在多于一半的方法中出现. 枚举这个&q ...

  8. mybatis连接池

    连接池 在 Mybatis 中,数据源 dataSource 共有三类,分别是: UNPOOLED : 不使用连接池的数据源.采用传统的 javax.sql.DataSource 规范中的连接池,My ...

  9. javascript 通信协议

    简介 javascript 通信协议是一个伪协议[1], 用于指定 URL 为 JavaScript 代码 语法: javascript:someScript; someScript 是一个或多个使用 ...

  10. java文件导出过程 CS、BS差别

    最近在做一个需求,类似和navicat工具差不多的,通过java代码吧数据库表的数据导出来.jdbc获取数据库连接,查询表数据,分批次用流写入文件txt.csv.json.xls.xlsx,搞定之后, ...