积性函数与完全积性函数

积性函数

若一个数论函数\(f\)满足当\(gcd(n,m)=1\)时,\(f(nm)=f(n)f(m)\)

则称\(f\)为积性函数

一些常见的积性函数

完全积性函数

若一个积性函数函数\(f\)满足当\(gcd(n,m)\ne1\)时,也有\(f(nm)=f(n)f(m)\)

则称\(f\)为完全积性函数

狄利克雷卷积

定义两个数论函数的狄利克雷卷积\(*\)

若\(t=f*g\)

\[t(n)=\sum\limits_{i|n}f(i)g(\frac{n}{i})
\]

等价于

\[t(n)=\sum\limits_{ij=n}f(i)g(j)
\]

狄利克雷卷积有以下性质(两个数论函数相等,是指两个函数的每一项都相等):

  1. 交换律 \(f*g=g*f\)
  2. 结合律 \(f*(g*h)=(f*g)*h\)
  3. 分配律 \(f*h+g*h=(f+g)*h\)
  4. 没有名字\((xf)*g=x(f*g)\)
  5. 单位元\(\epsilon*f=f\) ,其中\(\epsilon(n)=[n==1]\)
  6. 逆元:对于每一个\(f(1)≠0\)的函数\(f\),都有\(f∗g=ϵ\)

讨论一下第六个结论,如何求一个函数的逆呢?

只需要定义

\[g(n)=\frac{1}{f(1)}\left([n==1]-\sum\limits_{i|n,i\ne1}f(i)g(\frac{n}{i})\right)
\]

这样的话

\[\sum\limits_{i|n}f(i)g(\frac{n}{i})=f(1)g(n)+\sum\limits_{i|n,i\ne1}f(i)g(\frac{n}{i})=[n==1]
\]

几种比较常见的卷积关系:

\(\mu*1=\epsilon\) 【莫比乌斯反演】【\(\mu\)与\(1\)互为逆元】

\(\varphi*1=Id\)

\(\varphi=Id*\mu\)

\(d=1*1\)

\(1=\mu*d\)

莫比乌斯反演

我们定义\(1\)的逆是\(\mu\)

这样的话,如果\(g=f∗1\),就有\(f=f∗1∗\mu=g∗\mu\)

换句话说,就是

\[g(n)=\sum\limits_{d|n}f(d)\Leftrightarrow f(n)=\sum\limits_{d|n}\mu(\frac{n}{d})g(d)
\]

也可以这样子

\[g(d)=\sum\limits_{d|n}f(n)\Leftrightarrow f(d)=\sum\limits_{d|n}\mu(\frac{n}{d})*g(n)
\]

狄利克雷卷积 & 莫比乌斯反演的更多相关文章

  1. 狄利克雷卷积&莫比乌斯反演总结

    狄利克雷卷积&莫比乌斯反演总结 Prepare 1.\([P]\)表示当\(P\)为真时\([P]\)为\(1\),否则为\(0\). 2.\(a|b\)指\(b\)被\(a\)整除. 3.一 ...

  2. 狄利克雷卷积&莫比乌斯反演证明

    狄利克雷卷积简介 卷积这名字听起来挺学究的,今天学了之后发现其实挺朴实hhh. 卷积: "(n)"表示到n的一个范围. 设\(f,g\)是两个数论函数(也就是说,以自然数集为定义域 ...

  3. 狄利克雷卷积&莫比乌斯反演

    昨天刚说完不搞数论了,刚看到一个\(gcd\)的题目dalao用这个做了,虽然比正解麻烦,还是打算学一学了 数论函数: 数论函数的定义: 数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值 ...

  4. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  5. 我也不知道什么是"莫比乌斯反演"和"杜教筛"

    我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的 ...

  6. 【BZOJ3529】数表(莫比乌斯反演,树状数组)

    [BZOJ3529]数表(莫比乌斯反演,树状数组) 题解 首先不管\(A\)的范围的限制 要求的东西是 \[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))\] 其中\ ...

  7. 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

    [Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...

  8. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  9. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

随机推荐

  1. Spring Bean前置后置处理器的使用

    Spirng中BeanPostProcessor和InstantiationAwareBeanPostProcessorAdapter两个接口都可以实现对bean前置后置处理的效果,那这次先讲解一下B ...

  2. OSCP Learning Notes - Exploit(8)

    Tools: 3. hydra Hydra v8.9.1 (c) 2019 by van Hauser/THC - Please do not use in military or secret se ...

  3. PJzhang:python基础入门的7个疗程-seven

    猫宁!!! 参考链接:易灵微课-21天轻松掌握零基础python入门必修课 https://www.liaoxuefeng.com/wiki/1016959663602400 第19天:开源模块 数据 ...

  4. k8s(00)入门知识介绍

    系列文章说明 本系列文章,可以基本算是 老男孩2019年王硕的K8S周末班课程 笔记,根据视频来看本笔记最好,否则有些地方会看不明白 需要视频可以联系我 k8s概念入门 目录 系列文章说明 k8s概念 ...

  5. 设计模式:mediator模式

    目的:解决多组件之间的通信问题,使得组件之间的通信变得简单 核心:提供一个管理类,用来处理组件之间的通信,所有的组件只和管理类通信,组件彼此之间不在单独通信 例子: class Mediator { ...

  6. vue-cli 2.x和3.x配置移动端适配px自动转为rem

    移动端适配一直都是个大问题,现在也出现了各种各样的解决方案,比如 rem, vw 百分比等,但是比较成熟的切比较容易编写的还是 rem,他是相对于根元素的 font-size 进行等比例计算的. 但是 ...

  7. java基础知识--环境变量配置

    说到java,大家应该都了解:J2SE基础.J2ME嵌入式.J2EE延伸的内容,而我们平时接触和所谈大部分都是J2EE企业级应用开发. 作为开发者,使用java之前,必须安装java开发环境,配置ja ...

  8. GitHub和码云gitee及远程仓库管理

    目录 备注: 知识点 GitHub 码云(gitee.com) gitee的使用 本地版本库关联多个远程库 备注: 本文参考于廖雪峰老师的博客Git教程.依照其博客进行学习和记录,感谢其无私分享,也欢 ...

  9. django 学习记录(一)

    不使用 drf 来实现django 的 api 接口 json序列化 from django.shortcuts import render from django.views.generic.bas ...

  10. P1852 跳跳棋 [LCA思想+二分答案]

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有\(3\)颗棋子,分别在\(a,b,c\)这三个位置.我们要通过最少的跳动 ...