积性函数与完全积性函数

积性函数

若一个数论函数\(f\)满足当\(gcd(n,m)=1\)时,\(f(nm)=f(n)f(m)\)

则称\(f\)为积性函数

一些常见的积性函数

完全积性函数

若一个积性函数函数\(f\)满足当\(gcd(n,m)\ne1\)时,也有\(f(nm)=f(n)f(m)\)

则称\(f\)为完全积性函数

狄利克雷卷积

定义两个数论函数的狄利克雷卷积\(*\)

若\(t=f*g\)

\[t(n)=\sum\limits_{i|n}f(i)g(\frac{n}{i})
\]

等价于

\[t(n)=\sum\limits_{ij=n}f(i)g(j)
\]

狄利克雷卷积有以下性质(两个数论函数相等,是指两个函数的每一项都相等):

  1. 交换律 \(f*g=g*f\)
  2. 结合律 \(f*(g*h)=(f*g)*h\)
  3. 分配律 \(f*h+g*h=(f+g)*h\)
  4. 没有名字\((xf)*g=x(f*g)\)
  5. 单位元\(\epsilon*f=f\) ,其中\(\epsilon(n)=[n==1]\)
  6. 逆元:对于每一个\(f(1)≠0\)的函数\(f\),都有\(f∗g=ϵ\)

讨论一下第六个结论,如何求一个函数的逆呢?

只需要定义

\[g(n)=\frac{1}{f(1)}\left([n==1]-\sum\limits_{i|n,i\ne1}f(i)g(\frac{n}{i})\right)
\]

这样的话

\[\sum\limits_{i|n}f(i)g(\frac{n}{i})=f(1)g(n)+\sum\limits_{i|n,i\ne1}f(i)g(\frac{n}{i})=[n==1]
\]

几种比较常见的卷积关系:

\(\mu*1=\epsilon\) 【莫比乌斯反演】【\(\mu\)与\(1\)互为逆元】

\(\varphi*1=Id\)

\(\varphi=Id*\mu\)

\(d=1*1\)

\(1=\mu*d\)

莫比乌斯反演

我们定义\(1\)的逆是\(\mu\)

这样的话,如果\(g=f∗1\),就有\(f=f∗1∗\mu=g∗\mu\)

换句话说,就是

\[g(n)=\sum\limits_{d|n}f(d)\Leftrightarrow f(n)=\sum\limits_{d|n}\mu(\frac{n}{d})g(d)
\]

也可以这样子

\[g(d)=\sum\limits_{d|n}f(n)\Leftrightarrow f(d)=\sum\limits_{d|n}\mu(\frac{n}{d})*g(n)
\]

狄利克雷卷积 & 莫比乌斯反演的更多相关文章

  1. 狄利克雷卷积&莫比乌斯反演总结

    狄利克雷卷积&莫比乌斯反演总结 Prepare 1.\([P]\)表示当\(P\)为真时\([P]\)为\(1\),否则为\(0\). 2.\(a|b\)指\(b\)被\(a\)整除. 3.一 ...

  2. 狄利克雷卷积&莫比乌斯反演证明

    狄利克雷卷积简介 卷积这名字听起来挺学究的,今天学了之后发现其实挺朴实hhh. 卷积: "(n)"表示到n的一个范围. 设\(f,g\)是两个数论函数(也就是说,以自然数集为定义域 ...

  3. 狄利克雷卷积&莫比乌斯反演

    昨天刚说完不搞数论了,刚看到一个\(gcd\)的题目dalao用这个做了,虽然比正解麻烦,还是打算学一学了 数论函数: 数论函数的定义: 数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值 ...

  4. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  5. 我也不知道什么是"莫比乌斯反演"和"杜教筛"

    我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的 ...

  6. 【BZOJ3529】数表(莫比乌斯反演,树状数组)

    [BZOJ3529]数表(莫比乌斯反演,树状数组) 题解 首先不管\(A\)的范围的限制 要求的东西是 \[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))\] 其中\ ...

  7. 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

    [Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...

  8. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  9. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

随机推荐

  1. MySql-Binlog协议

    MySQL主备复制原理 MySQL master 将数据变更写入二进制日志( binary log, 其中记录叫做二进制日志事件binary log events,可以通过 show binlog e ...

  2. js 自定义阻止事件冒泡函数

    // 以下改方法全兼容Chrome function stopBubble(event){ if(event.stopPropagation){   // 兼容火狐(firebox) event.st ...

  3. echarts 实战 : 标题的富文本样式

    官方文档在这一块交待的不是很清楚,记录一下. title:{ left:15, top:10, subtext:"AAA {yellow|316} BBB {blue|219}", ...

  4. python环境搭建及配置

    我选择的是pycharm,这个对新手比较友好 我目前正在自学周志华的西瓜书,在做练习题3.3时需要用到python来实现,做这个练习需要numpy库和matplot库,最开始的时候忘了anaconda ...

  5. 01 安装Linux虚拟机

    平常的工作学习中,Linux成为了一项比不可少的需要的掌握的技能,但是大部分人又不习惯于使用Linux进行生活,所以你需要在你的Windows电脑上安装一个虚拟机,那如何安装呢?其实不难,跟着我一步步 ...

  6. Centos 7 静态IP设置

    1.编辑 ifcfg-eth0 文件,vim 最小化安装时没有被安装,需要自行安装不描述. # vim /etc/sysconfig/network-scripts/ifcfg-eth0 2.修改如下 ...

  7. Netty 学习笔记(1) ------ Hello World

    服务端启动流程 package com.example.netty; import com.example.netty.handler.HelloServerHandler; import io.ne ...

  8. xctf-web fakebook

    点join注册账号 进入view.php发现参数no存在sql注入,但是过滤了select关键字,用内联注释绕过 在users表的data字段发现了用序列化存储的用户信息 然后就卡在这里了....看了 ...

  9. 使用 expect 重启失败的 git pull/push 操作

    问题的提出 最近使用 github 上传.下载项目代码时,经常会卡很久,有时候在命令行打了 git push 然后就去上厕所了,结果等我回来的时候,发现 push 早已经失败了,还得重新提交一下.如果 ...

  10. acwing 173. 矩阵距离(bfs)

    给定一个N行M列的01矩阵A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为: dist(A[i][j],A[k][l])=|i−k|+|j−l|dist(A[i][j],A[k][l]) ...