Time Limit: 10 Seconds      Memory Limit: 65536 KB


Dr. X is a biologist, who likes rabbits very much and can do everything for them. 2012 is coming, and Dr. X wants to take some rabbits to Noah's Ark, or there are no rabbits any more.

A rabbit's genes can be expressed as a string whose length is l (1 ≤ l ≤ 100) containing only 'A', 'G', 'T', 'C'. There is no doubt that Dr. X had a in-depth research on the rabbits'
genes. He found that if a rabbit gene contained a particular gene segment, we could consider it as a good rabbit, or sometimes a bad rabbit. And we use a value W to measure this index.

We can make a example, if a rabbit has gene segment "ATG", its W would plus 4; and if has gene segment "TGC", its W plus -3. So if a rabbit's gene string is "ATGC",
its W is 1 due to ATGC contains both "ATG"(+4) and "TGC"(-3). And if another rabbit's gene string is "ATGATG", its W is 4 due to one gene segment can be calculate only once.

Because there are enough rabbits on Earth before 2012, so we can assume we can get any genes with different structure. Now Dr. X want to find a rabbit whose gene has highestW value.
There are so many different genes with length l, and Dr. X is not good at programming, can you help him to figure out the W value of the best rabbit.

Input

There are multiple test cases. For each case the first line is two integers n (1 ≤ n ≤ 10),l (1 ≤ l ≤ 100), indicating the number of the particular
gene segment and the length of rabbits' genes.

The next n lines each line contains a string DNAi and an integer wi (|wi| ≤ 100), indicating this gene segment and the value it can
contribute to a rabbit's W.

Output

For each test case, output an integer indicating the W value of the best rabbit. If we found this value is negative, you should output "No Rabbit after 2012!".

Sample Input

2 4
ATG 4
TGC -3 1 6
TGC 4 4 1
A -1
T -2
G -3
C -4

Sample Output

4
4
No Rabbit after 2012!

Hint

case 1:we can find a rabbit whose gene string is ATGG(4), or ATGA(4) etc.

case 2:we can find a rabbit whose gene string is TGCTGC(4), or TGCCCC(4) etc.

case 3:any gene string whose length is 1 has a negative W.

题意:给你n个模板串,每一个模板串对应一个数值,有正也有负,然你构造一个长度为m的模板串,使得模板串的价值最大,且一种模板串如果重复出现只统计一次。

思路:考虑到n<=10,所以用状压dp的思想,设状态为dp[i][j][state]表示走了i步,当前节点为j,含有的单词状态为state的最大值。但是这个状态消耗的内存太大,有100*1000*1024,所以用滚动数组(这点是看了别人的题解才发现的,果然意识不够啊..= .=),然后构造trie图,dp就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxnode 1100
int t0,t1,t2,t3;
char s[14],str[50];
int cas=0;
int dp[2][1005][1030],w[1030];
int n,m; struct trie{
int sz,root,val[maxnode],next[maxnode][4],fail[maxnode];
int q[1111111];
void init(){
int i;
sz=root=0;
val[0]=0;
for(i=0;i<4;i++){
next[root][i]=-1;
}
}
int idx(char c){
if(c=='A')return 0;
if(c=='C')return 1;
if(c=='T')return 2;
if(c=='G')return 3;
}
void charu(char *s,int index){
int i,j,u=0;
int len=strlen(s);
for(i=0;i<len;i++){
int c=idx(s[i]);
if(next[u][c]==-1){
sz++;
val[sz]=0;
next[u][c]=sz;
u=next[u][c];
for(j=0;j<4;j++){
next[u][j]=-1;
}
}
else{
u=next[u][c]; } }
val[u]|=(1<<index-1);
} void build(){
int i,j;
int front,rear;
front=1;rear=0;
for(i=0;i<4;i++){
if(next[root][i]==-1 ){
next[root][i]=root;
}
else{
fail[next[root][i] ]=root;
rear++;
q[rear]=next[root][i];
}
}
while(front<=rear){
int x=q[front];
val[x]|=val[fail[x] ];
front++;
for(i=0;i<4;i++){
if(next[x][i]==-1){
next[x][i]=next[fail[x] ][i]; }
else{
fail[next[x][i] ]=next[fail[x] ][i];
rear++;
q[rear]=next[x][i];
}
}
}
}
void solve(){
int i,j,state,t,state1;
for(j=0;j<=sz;j++){
for(state=0;state<(1<<n);state++){
dp[0][j][state]=dp[1][j][state]=-inf;
}
}
int tot=0;
dp[tot][0][0]=0;
for(i=0;i<m;i++){
for(j=0;j<=sz;j++){
for(state=0;state<(1<<n);state++){
if(dp[tot][j][state]==-inf)continue;
for(t=0;t<4;t++){
state1=(state|val[next[j][t] ]);
dp[1^tot ][next[j][t] ][state1]=max(dp[1^tot ][next[j][t] ][state1],w[state1] );
}
}
}
tot=1^tot;
for(j=0;j<=sz;j++){
for(state=0;state<(1<<n);state++){
dp[1^tot][j][state]=-inf;
}
}
}
int maxx=-inf;
for(j=0;j<=sz;j++){
for(state=0;state<(1<<n);state++){
maxx=max(maxx,dp[tot][j][state]);
} }
if(maxx<0){
printf("No Rabbit after 2012!\n");
}
else printf("%d\n",maxx);
}
}ac; int main()
{
int i,j;
int value[20],len,state;
while(scanf("%d%d",&n,&m)!=EOF)
{
ac.init();
for(i=1;i<=n;i++){
scanf("%s%d",&s,&value[i]);
len=strlen(s);
if(len>m)continue;
ac.charu(s,i);
}
for(state=0;state<(1<<n);state++){
w[state]=0;
for(i=1;i<=n;i++){
if(state&(1<<(i-1) )){
w[state]+=value[i];
}
}
}
ac.build();
ac.solve();
}
return 0;
}

zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)的更多相关文章

  1. hdu 4057--Rescue the Rabbit(AC自动机+状压DP)

    题目链接 Problem Description Dr. X is a biologist, who likes rabbits very much and can do everything for ...

  2. hdu 2825 aC自动机+状压dp

    Wireless Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】

    题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...

  4. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  5. hdu2825 Wireless Password(AC自动机+状压dp)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  6. HDU 4057:Rescue the Rabbit(AC自动机+状压DP)***

    http://acm.hdu.edu.cn/showproblem.php?pid=4057 题意:给出n个子串,串只包含‘A’,'C','G','T'四种字符,你现在需要构造出一个长度为l的串,如果 ...

  7. HDU4057 Rescue the Rabbit(AC自动机+状压DP)

    题目大概是给几个DNA片段以及它们各自的权值,如果一个DNA包含某个片段那么它的价值就加上这个片段的权值,同时包含多个相同DNA片段也只加一次,问长度l的DNA可能的最大价值. 与HDU2825大同小 ...

  8. hdu 6086 -- Rikka with String(AC自动机 + 状压DP)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  9. UVALive - 4126 Password Suspects (AC自动机+状压dp)

    给你m个字符串,让你构造一个字符串,包含所有的m个子串,问有多少种构造方法.如果答案不超过42,则按字典序输出所有可行解. 由于m很小,所以可以考虑状压. 首先对全部m个子串构造出AC自动机,每个节点 ...

随机推荐

  1. 【Java基础】Java 语言概述

    Java 语言概述 主要应用场景 JavaEE.大数据.Android 开发方向. 基础知识概述 编程语言核心结构 变量.基本语法.分支.循环.数组.- Java 面向对象的核心逻辑 OOP.封装.继 ...

  2. disfunc绕过

    绕过DisFunc的常见小技巧 解析webshell命令不能执行时的三大情况 一是 php.ini 中用 disable_functions 指示器禁用了 system().exec() 等等这类命令 ...

  3. [GKCTF2020]老八小超市儿

    题目来自buu 一.题目初探 首先是一个shopxo搭建的演示站,通过扫描后台得到如下的网页 二.题目解答 首先是找到后台登陆的admin.php,然后通过百度找到shopxo的默认管理员登陆账号和密 ...

  4. Empire

    Empire 内网渗透神器 一 基本渗透 安装 git clone https://github.com/BC-SECURITY/Empire/ ./setup/install.sh 启动 ./emp ...

  5. 入门OJ:扫雪

    扫雪1 题目描述 大雪履盖了整个城市,市政府要求冬季服务部门尽快将一些街道(列在一份清单中)的积雪清除掉以恢复交通,整个城市由许多交叉路口和街道构成,当然任意两个交叉路口都是直接或间接连通的,清单给出 ...

  6. Graph Explore的使用介绍

    我在Graph API开发中用的最多的测试工具就是Graph Explore,这个是微软开发的网页版的Graph API的测试工具,能满足我大部分需求. 访问网址是:Graph Explorer - ...

  7. 三十三:WEB漏洞-逻辑越权之水平垂直越权

    水平和垂直越权 水平越权:可以获得同级别用户权限 垂直权限:享受高几个层次的用户权限 解释,原理,检测,利用,防御 通过更换的某个ID之类的身份标识,从而使得A账号获取(修改,删除)B账号的数据,通过 ...

  8. 面试常问的ArrayQueue底层实现

    public class ArrayQueue<T> extends AbstractList<T>{ //定义必要的属性,容量.数组.头指针.尾指针 private int ...

  9. 本地Mac通过堡垒机代理实现跨堡垒机scp问题

    近日,公司在跳板机前架设了堡垒机,以防止ssh攻击,但这带来一个问题,我们平常直接ssh跳板机,可以直接使用scp来上传或下载跳板机数据到本地 架设堡垒之后经常使用的scp工具不好用了 于是本期就来解 ...

  10. 简易双色球dome分享

    代码如下: <style type="text/css"> div {font-weight: bold;text-align: center;} .tone{widt ...