gevent

GitHub - gevent/gevent: Coroutine-based concurrency library for Python https://github.com/gevent/gevent

gevent - 廖雪峰的官方网站 https://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001407503089986d175822da68d4d6685fbe849a0e0ca35000

Python通过yield提供了对协程的基本支持,但是不完全。而第三方的gevent为Python提供了比较完善的协程支持。

gevent是第三方库,通过greenlet实现协程,其基本思想是:

当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

Design — Gunicorn 19.9.0 documentation
http://docs.gunicorn.org/en/stable/design.html#async-workers

eventlet-没有孙子worker.png

请求发来前运行后.png

worker 数固定

请求发来后-初始阶段-每个子worker新增孙worker.png

请求发来后-进行阶段-随着jmeter-线程数和循环数的增加-worker增加.png

https://www.tornadoweb.org/en/stable/guide/async.html#asynchronous

systems like gevent use lightweight threads to offer performance comparable to asynchronous systems, but they do not actually make things asynchronous

Asynchronous
An asynchronous function returns before it is finished, and generally causes some work to happen in the background before triggering some future action in the application (as opposed to normal synchronous functions, which do everything they are going to do before returning). There are many styles of asynchronous interfaces:

Callback argument

Return a placeholder (Future, Promise, Deferred)

Deliver to a queue

Callback registry (e.g. POSIX signals)

Regardless of which type of interface is used, asynchronous functions by definition interact differently with their callers; there is no free way to make a synchronous function asynchronous in a way that is transparent to its callers (systems like gevent use lightweight threads to offer performance comparable to asynchronous systems, but they do not actually make things asynchronous).

Asynchronous operations in Tornado generally return placeholder objects (Futures), with the exception of some low-level components like the IOLoop that use callbacks. Futures are usually transformed into their result with the await or yield keywords.

Here is a sample synchronous function:

from tornado.httpclient import HTTPClient

def synchronous_fetch(url):
http_client = HTTPClient()
response = http_client.fetch(url)
return response.body
And here is the same function rewritten asynchronously as a native coroutine:

from tornado.httpclient import AsyncHTTPClient

async def asynchronous_fetch(url):
http_client = AsyncHTTPClient()
response = await http_client.fetch(url)
return response.body
Or for compatibility with older versions of Python, using the tornado.gen module:

from tornado.httpclient import AsyncHTTPClient
from tornado import gen

@gen.coroutine
def async_fetch_gen(url):
http_client = AsyncHTTPClient()
response = yield http_client.fetch(url)
raise gen.Return(response.body)
Coroutines are a little magical, but what they do internally is something like this:

from tornado.concurrent import Future

def async_fetch_manual(url):
http_client = AsyncHTTPClient()
my_future = Future()
fetch_future = http_client.fetch(url)
def on_fetch(f):
my_future.set_result(f.result().body)
fetch_future.add_done_callback(on_fetch)
return my_future
Notice that the coroutine returns its Future before the fetch is done. This is what makes coroutines asynchronous.

Anything you can do with coroutines you can also do by passing callback objects around, but coroutines provide an important simplification by letting you organize your code in the same way you would if it were synchronous. This is especially important for error handling, since try/except blocks work as you would expect in coroutines while this is difficult to achieve with callbacks. Coroutines will be discussed in depth in the next section of this guide.

异步 在完成之前返回

协程 返回未来

小结:

1、

micro-thread with no implicit scheduling; coroutines, in other words.

没有显式调度的微线程,换言之 协程

2、

一个greenlet切换到另一个greenlet,前者被suspend推迟、暂停

uWSGI项目 — uWSGI 2.0 文档 https://uwsgi-docs-zh.readthedocs.io/zh_CN/latest/#

循环引擎 (实现事件和并发,组件可以在reforking, threaded, asynchronous/evented和green thread/coroutine模式下运行。支持多种技术,包括uGreen, Greenlet, Stackless, Gevent, Coro::AnyEvent, Tornado, Goroutines和Fibers)

greenlet: Lightweight concurrent programming — greenlet 0.4.0 documentation
https://greenlet.readthedocs.io/en/latest/#greenlet-lightweight-concurrent-programming

The “greenlet” package is a spin-off of Stackless, a version of CPython that supports micro-threads called “tasklets”. Tasklets run pseudo-concurrently (typically in a single or a few OS-level threads) and are synchronized with data exchanges on “channels”.

A “greenlet”, on the other hand, is a still more primitive notion of micro-thread with no implicit scheduling; coroutines, in other words. This is useful when you want to control exactly when your code runs. You can build custom scheduled micro-threads on top of greenlet; however, it seems that greenlets are useful on their own as a way to make advanced control flow structures. For example, we can recreate generators; the difference with Python’s own generators is that our generators can call nested functions and the nested functions can yield values too. (Additionally, you don’t need a “yield” keyword. See the example in test/test_generator.py).

Greenlets are provided as a C extension module for the regular unmodified interpreter.

greenlet: Lightweight concurrent programming — greenlet 0.4.0 documentation
https://greenlet.readthedocs.io/en/latest/#introduction

A “greenlet” is a small independent pseudo-thread. Think about it as a small stack of frames; the outermost (bottom) frame is the initial function you called, and the innermost frame is the one in which the greenlet is currently paused. You work with greenlets by creating a number of such stacks and jumping execution between them. Jumps are never implicit: a greenlet must choose to jump to another greenlet, which will cause the former to suspend and the latter to resume where it was suspended. Jumping between greenlets is called “switching”.

When you create a greenlet, it gets an initially empty stack; when you first switch to it, it starts to run a specified function, which may call other functions, switch out of the greenlet, etc. When eventually the outermost function finishes its execution, the greenlet’s stack becomes empty again and the greenlet is “dead”. Greenlets can also die of an uncaught exception.

https://www.tornadoweb.org/en/stable/#threads-and-wsgi

Threads and WSGI

一个进程一个线程

Tornado is different from most Python web frameworks. It is not based on WSGI, and it is typically run with only one thread per process. See the User’s guide for more on Tornado’s approach to asynchronous programming.

While some support of WSGI is available in the tornado.wsgi module, it is not a focus of development and most applications should be written to use Tornado’s own interfaces (such as tornado.web) directly instead of using WSGI.

In general, Tornado code is not thread-safe. The only method in Tornado that is safe to call from other threads is IOLoop.add_callback. You can also use IOLoop.run_in_executor to asynchronously run a blocking function on another thread, but note that the function passed to run_in_executor should avoid referencing any Tornado objects. run_in_executor is the recommended way to interact with blocking code.

https://www.tornadoweb.org/en/stable/guide/async.html#asynchronous-and-non-blocking-i-o

Real-time web features require a long-lived mostly-idle connection per user. In a traditional synchronous web server, this implies devoting one thread to each user, which can be very expensive.

To minimize the cost of concurrent connections, Tornado uses a single-threaded event loop. This means that all application code should aim to be asynchronous and non-blocking because only one operation can be active at a time.

The terms asynchronous and non-blocking are closely related and are often used interchangeably, but they are not quite the same thing.

传统同步web服务,给每个用户一个线程 Tornado使用单线程的事件循环 这要求应用代码是异步的、非阻塞的,因为同时置疑一个操作时活跃的

based on Greenlets (via Eventlet and Gevent) fork 孙子worker 比较 gevent不是异步 协程原理 占位符 placeholder (Future, Promise, Deferred) 循环引擎 greenlet 没有显式调度的微线程,换言之 协程的更多相关文章

  1. 循环引擎 greenlet 没有显式调度的微线程,换言之 协程

    小结: 1. micro-thread with no implicit scheduling; coroutines, in other words. 没有显式调度的微线程,换言之 协程 2. 一个 ...

  2. based on Greenlets (via Eventlet and Gevent) fork 孙子worker 比较

    Design — Gunicorn 19.9.0 documentationhttp://docs.gunicorn.org/en/stable/design.html#async-workers e ...

  3. paip.提升性能---协程“微线程”的使用.

    paip.提升性能---协程的使用. 近乎无限并发的"微线程" 作者Attilax  艾龙,  EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:h ...

  4. Python学习之路--进程,线程,协程

    进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Q ...

  5. 11.python之线程,协程,进程,

    一,进程与线程 1.什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行 ...

  6. 文成小盆友python-num11-(1) 线程 进程 协程

    本节主要内容 线程补充 进程 协程 一.线程补充 1.两种使用方法 这里主要涉及两种使用方法,一种为直接使用,一种为定义自己的类然后继承使用如下: 直接使用如下: import threading d ...

  7. python自动化开发-[第十天]-线程、协程、socketserver

    今日概要 1.线程 2.协程 3.socketserver 4.基于udp的socket(见第八节) 一.线程 1.threading模块 第一种方法:实例化 import threading imp ...

  8. Python线程和协程-day10

    写在前面 上课第10天,打卡: 感谢Egon老师细致入微的讲解,的确有学到东西! 一.线程 1.关于线程的补充 线程:就是一条流水线的执行过程,一条流水线必须属于一个车间: 那这个车间的运行过程就是一 ...

  9. python线程、协程、I/O多路复用

    目录: 并发多线程 协程 I/O多路复用(未完成,待续) 一.并发多线程 1.线程简述: 一条流水线的执行过程是一个线程,一条流水线必须属于一个车间,一个车间的运行过程就是一个进程(一个进程内至少一个 ...

随机推荐

  1. 一个简单的java项目使用hibernate连接mysql数据库

    实体类与表对应文件Customer.hbm.xml <?xml version="1.0" encoding="UTF-8"?><!DOCTY ...

  2. python的二维数组操作--坑

    用到python list的二维数组,发现有一些需要注意的地方. 第一种赋值方法: list0 = [[0]*3]*4 list0[0][1] = 1 print(list0) 输出结果为: [[0, ...

  3. JVM个人总结一

    看了深入理解JAVA虚拟机已经有一段时间了  发现很多东西如果不总结  脑子里总是没有一条线贯穿起来,也比较模糊混乱,所以还是有必要利用逻辑思维图总结下. JVM看了下  大致比较重要的分内存区域划分 ...

  4. 漫谈JSON Web Token(JWT)

    一.背景 传统的单体应用基于cookie-session的身份验证流程一般是这样的: 用户向服务器发送账户和密码. 服务器验证账号密码成功后,相关数据(用户角色.登录时间等)都保存到当前会话中. 服务 ...

  5. 模板匹配入门实践:opencv+python识别PDB板

    任务要求: 基于模板匹配算法识别PCB板型号 使用工具: Python3.OpenCV 使用模板匹配算法,模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识 ...

  6. flume伪分布式安装

    flume伪分布式安装: 1.导包:apache-flume-1.7.0-bin.tar.gz 2.配置环境变量:/etc/profile export FLUME_HOME=/yang/apache ...

  7. 利用dotnet-dump分析docker容器内存泄露

    目录 一 运行官方示例 1,Clone代码并编译 2,创建Dockerfile构建镜像 3,启动容器 二 生成dump转储文件 1,制造问题 2,创建dump文件 三 分析dump文件 1,创建一个用 ...

  8. strings包

    http://docscn.studygolang.com/pkg/strings/ Golang官方对strings包的介绍,strings包都是关于字符串的操作 常用的函数: 判断s1中是否包含字 ...

  9. 剑指offer 面试题9:用两个栈实现队列

    题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 使用栈实现队列的下列操作:push(x) -- 将一个元素放入队列的尾部.pop() -- 从队列首部移 ...

  10. 关于使用th:text获取不到值

    今天在使用thymeleaf模板引擎整合SpringBoot时,对于从controller层传递过来的参数"message",无法获取. 控制层代码如下: @PostMapping ...