NLP文本多标签分类---HierarchicalAttentionNetwork
最近一直在做多标签分类任务,学习了一种层次注意力模型,基本结构如下:

简单说,就是两层attention机制,一层基于词,一层基于句。
首先是词层面:
输入采用word2vec形成基本语料向量后,采用双向GRU抽特征:

一句话中的词对于当前分类的重要性不同,采用attention机制实现如下:

tensorflow代码实现如下:
···
def attention_word_level(self, hidden_state):
"""
input1:self.hidden_state: hidden_state:list,len:sentence_length,element:[batch_size*num_sentences,hidden_size*2]
input2:sentence level context vector:[batch_size*num_sentences,hidden_size*2]
:return:representation.shape:[batch_size*num_sentences,hidden_size*2]
"""
hidden_state_ = tf.stack(hidden_state, axis=1) # shape:[batch_size*num_sentences,sequence_length,hidden_size*2]
# 0) one layer of feed forward network
hidden_state_2 = tf.reshape(hidden_state_, shape=[-1,
self.hidden_size * 2]) # shape:[batch_size*num_sentences*sequence_length,hidden_size*2]
# hidden_state_:[batch_size*num_sentences*sequence_length,hidden_size*2];W_w_attention_sentence:[,hidden_size*2,,hidden_size*2]
hidden_representation = tf.nn.tanh(tf.matmul(hidden_state_2,
self.W_w_attention_word) + self.W_b_attention_word) # shape:[batch_size*num_sentences*sequence_length,hidden_size*2]
hidden_representation = tf.reshape(hidden_representation, shape=[-1, self.sequence_length,
self.hidden_size * 2]) # shape:[batch_size*num_sentences,sequence_length,hidden_size*2]
# attention process:1.get logits for each word in the sentence. 2.get possibility distribution for each word in the sentence. 3.get weighted sum for the sentence as sentence representation.
# 1) get logits for each word in the sentence.
hidden_state_context_similiarity = tf.multiply(hidden_representation,
self.context_vecotor_word) # shape:[batch_size*num_sentences,sequence_length,hidden_size*2]
attention_logits = tf.reduce_sum(hidden_state_context_similiarity,
axis=2) # shape:[batch_size*num_sentences,sequence_length]
# subtract max for numerical stability (softmax is shift invariant). tf.reduce_max:Computes the maximum of elements across dimensions of a tensor.
attention_logits_max = tf.reduce_max(attention_logits, axis=1,
keep_dims=True) # shape:[batch_size*num_sentences,1]
# 2) get possibility distribution for each word in the sentence.
p_attention = tf.nn.softmax(
attention_logits - attention_logits_max) # shape:[batch_size*num_sentences,sequence_length]
# 3) get weighted hidden state by attention vector
p_attention_expanded = tf.expand_dims(p_attention, axis=2) # shape:[batch_size*num_sentences,sequence_length,1]
# below sentence_representation'shape:[batch_size*num_sentences,sequence_length,hidden_size*2]<----p_attention_expanded:[batch_size*num_sentences,sequence_length,1];hidden_state_:[batch_size*num_sentences,sequence_length,hidden_size*2]
sentence_representation = tf.multiply(p_attention_expanded,
hidden_state_) # shape:[batch_size*num_sentences,sequence_length,hidden_size*2]
sentence_representation = tf.reduce_sum(sentence_representation,
axis=1) # shape:[batch_size*num_sentences,hidden_size*2]
return sentence_representation # shape:[batch_size*num_sentences,hidden_size*2]
···
句子层面和词层面基本相同
双向GRU输入,softmax计算attention


最后基于句子层面的输出,计算分类

指数损失

github源代码:https://github.com/zhaowei555/multi_label_classify/tree/master/han
NLP文本多标签分类---HierarchicalAttentionNetwork的更多相关文章
- fastText、TextCNN、TextRNN……这里有一套NLP文本分类深度学习方法库供你选择
https://mp.weixin.qq.com/s/_xILvfEMx3URcB-5C8vfTw 这个库的目的是探索用深度学习进行NLP文本分类的方法. 它具有文本分类的各种基准模型,还支持多标签分 ...
- NLP文本分类方法汇总
模型: FastText TextCNN TextRNN RCNN 分层注意网络(Hierarchical Attention Network) 具有注意的seq2seq模型(seq2seq with ...
- NLP文本分类
引言 其实最近挺纠结的,有一点点焦虑,因为自己一直都期望往自然语言处理的方向发展,梦想成为一名NLP算法工程师,也正是我喜欢的事,而不是为了生存而工作.我觉得这也是我这辈子为数不多的剩下的可以自己去追 ...
- 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作
目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注N ...
- LM-MLC 一种基于完型填空的多标签分类算法
LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛[赛道一]设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签 ...
- CSS.02 -- 样式表 及标签分类(块、行、行内块元素)、CSS三大特性、背景属性
样式表书写位置 内嵌式写法 <head> <style type="text/css"> 样式表写法 </style> </head&g ...
- html(常用标签,标签分类),页面模板, CSS(css的三种引入方式),三种引入方式优先级
HTML 标记语言为非编程语言负责完成页面的结构 组成: 标签:被<>包裹的由字母开头,可以结合合法字符( -|数字 ),能被浏览器解析的特殊符号,标签有头有尾 指令:被<>包 ...
- 从零开始学 Web 之 CSS(二)文本、标签、特性
大家好,这里是「 Daotin的梦呓 」从零开始学 Web 系列教程.此文首发于「 Daotin的梦呓 」公众号,欢迎大家订阅关注.在这里我会从 Web 前端零基础开始,一步步学习 Web 相关的知识 ...
- Python-HTML 最强标签分类
编程: 使用(展示)数据 存储数据 处理数据 前端 1. 前端是做什么的? 2. 我们为什么要学前端? 3. 前端都有哪些内容? 1. HTML 2. CSS 3. JavaScript 4.jQue ...
随机推荐
- Kafka控制器事件处理全流程分析
前言 大家好,我是 yes. 这是Kafka源码分析第四篇文章,今天来说说 Kafka控制器,即 Kafka Controller. 源码类的文章在手机上看其实效果很差,这篇文章我分为两部分,第一部分 ...
- eureka源码--服务的注册、服务续约、服务发现、服务下线、服务剔除、定时任务以及自定义注册中心的思路
微服务注册后,在注册中心的注册表结构是一个map: ConcurrentHashMap<String, Map<String, Lease<InstanceInfo>>& ...
- JQuery实现tab页
用ul 和 div 配合实现tab 页 1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset="U ...
- #ifdef _DEBUG/ #define new DEBUG_NEW/ #endif的作用
转载:https://blog.csdn.net/minghui_/article/details/80748142 转自:#ifdef _DEBUG #define new DEBUG_NEW #e ...
- C语言编程入门之--第六章C语言控制语句
导读:本章带读者理解什么是控制语句,然后逐个讲解C语言常用的控制语句,含有控制语句的代码量多起来后就要注意写代码的风格了,本章末节都是练习题,大量的练习才能掌握好控制语句的使用. 6.1 什么是控制语 ...
- SDK测试操作文档
准备所需材料 先把下列所需压缩包和文件传到虚拟机中. crypto-config压缩包存放order和peer节点所需要的证书文件(需要的是申请联盟链中的order和peer的证书文件) m2压缩包是 ...
- Sticks(UVA - 307)【DFS+剪枝】
Sticks(UVA - 307) 题目链接 算法 DFS+剪枝 1.这道题题意就是说原本有一些等长的木棍,后来把它们切割,切割成一个个最长为50单位长度的小木棍,现在想让你把它们组合成一个个等长的大 ...
- es使用--新建、删除、增删改数据
# 进入bin目录 cd /czz/elsearch/bin # 后台启动(不加-d参数则是前台启动,日志在控制台) # 后台启动日志如果不配置,在es目录的logs下面 ./elasticsearc ...
- GUI版本的emacs
概要 emacs 配置 X11 配置 输入法配置 spacemacs 中的配置 fcitx 汉字显示方块的问题 总结 优势 劣势 概要 之前一直使用 terminal 版本的 emacs, 性能和显示 ...
- 手工实现docker的vxlan
前几天了解了一下docker overlay的原理,然后一直想验证一下自己的理解是否正确,今天模仿docker手工搭建了一个overlay网络.先上拓扑图,其实和上次画的基本一样.我下面提到的另一台机 ...