题面

传送门:洛咕


Solution

这题比这题不懂简单到哪里去了

好吧,我们来颓柿子。

为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\)

为了方便讨论,以下柿子均假设\(b>=a\)

为了方便书写,以下除号均为向下取整

题目要求的显然是:

\(\large \sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=x]\)

根据套路,我们这里要先把这个\(x\)除掉

\(\large \sum_{i=1}^{a/x}\sum_{j=1}^{b/x}[gcd(i,j)=1]\)

再根据套路,根据莫比乌斯函数中\([x=1]=\sum_{d|x}\mu(d)\)的性质,我们把这个\(gcd(i,j)\)略作转换:

\(\large \sum_{i=1}^{a/x}\sum_{j=1}^{b/x}\sum_{d|gcd(i,j)}\mu(d)\)

再次根据套路,我们把\(d\)的和号改成枚举\(d\)的形式:

\(\large \sum_{i=1}^{a/x}\sum_{j=1}^{b/x}\sum_{d=1}^{a/x}\mu(d)*[d|gcd(i,j)]\)

显然,我们可以把\(\mu(d)\)和它前面的和号提到前面去

\(\large \sum_{d=1}^{a/x}\mu(d)\sum_{i=1}^{a/x}\sum_{j=1}^{b/x}[d|gcd(i,j)]\)

显然,若要\([d|gcd(i,j)]=1\),则\(i,j\)都必须为\(d\)的倍数

\(\large \sum_{d=1}^{a/x}\mu(d)\frac{a}{x*d}\frac{b}{x*d}\)

OK,到此为止,我们所有东西都可以算了。

前面那个\(\mu(d)\)可以配上后面的两个和号用整除分块的方法前缀和计算即可。如果不是很清楚的话可以看一下代码。

时间复杂度\(O(m*\sqrt n)\)

完结撒花✿✿ヽ(°▽°)ノ✿0


Code

//Luogu P3455 [POI2007]ZAP-Queries
//Jan,22ed,2019
//莫比乌斯反演
#include<iostream>
#include<cstdio>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int N=50000+100;
const int M=50000;
int cnt_p,prime[N],mu[N];
bool noPrime[N];
void GetPrime(int n)
{
noPrime[1]=true,mu[1]=1;
for(int i=2;i<=n;i++)
{
if(noPrime[i]==false)
prime[++cnt_p]=i,mu[i]=-1;
for(int j=1;j<=cnt_p and i*prime[j]<=n;j++)
{
noPrime[i*prime[j]]=true;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=mu[i]*mu[prime[j]];
}
}
}
long long pre_mu[N];
int main()
{
GetPrime(M);
for(int i=1;i<=M;i++)
pre_mu[i]=pre_mu[i-1]+mu[i]; int T=read();
for(;T>0;T--)
{
long long a=read(),b=read(),x=read(); long long ans=0;
if(a>b) swap(a,b);
a/=x,b/=x;
for(int l=1,r;l<=a;l=r+1)
{
r=min(a/(a/l),b/(b/l));
ans+=(pre_mu[r]-pre_mu[l-1])*(a/l)*(b/l);
} printf("%lld\n",ans);
}
return 0;
}

[Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )的更多相关文章

  1. 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)

    题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...

  2. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  3. 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...

  4. 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)

    题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...

  5. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

  6. BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...

  7. P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    思路 和YY的GCD类似但是更加简单了 类似的推一波公式即可 \[ F(n)=\sum_{n|d}f(d) \] \[ f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d) \] \ ...

  8. [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

    题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...

  9. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

随机推荐

  1. 《RESTful Web APIs》书中有一段POST API示例,现实中我们如何测试这个示例?书中没有说,Let's try it!

    <RESTful Web APIs>书中有一段POST API示例: I then send the filled-out template as part of an HTTP POST ...

  2. 剑指Offer(三):从尾到头打印链表

    一.前言 刷题平台:牛客网 二.题目 输入一个链表,返回一个反序的链表. 1.思路 通常,这种情况下,我们不希望修改原链表的结构.返回一个反序的链表,这就是经典的"后进先出",我们 ...

  3. C++里的程序 GetDlgItem(IDC_EDIT_INPUTFILE) ->EnableWindow(TRUE)

    转载:https://zhidao.baidu.com/question/654519209423407765.html GetDlgItem(IDC_EDIT_INPUTFILE) ->Ena ...

  4. C++ 关键字 enum

    转自:https://blog.csdn.net/cppwork/article/details/18814315 C++ 关键字 enum. 枚举 1.  概念 我们经常需要为某些属性定义一组可选择 ...

  5. TP5调用小程序微信支付,回调,在待支付中再次调用微信支付

    1,必须要有 $mch_id $key $appid这三个值,是需要去申请的,我是直接用公司的2,购买商品订单号用户openid统一下单名称商品价格(必须以分为单位,调起微信支付)服务器的ip地址(没 ...

  6. C#数据结构-静态链表

    对于双向链表中的节点,都包括一个向前.向后的属性器用于指向前后两个节点,对于引用类型,对象存储的是指向内存片段的内存指针,那么我们可以将其简化看作向前向后的两个指针. 现在我们将引用类型替换为值类型i ...

  7. mysql5.5和5.6的一些区别

    timestamp 5.5中 直接写timestamp不加长度   5.6 中 写的timestamp(3) datatime 5.5中 直接写datetime 不加长度  5.6中 可以添加长度(3 ...

  8. 手把手教你AspNetCore WebApi:Nginx(负载均衡)

    前言 这几天小明又有烦恼了,系统上线一段时间后,系统性能出现了问题,缓存等都用上了,还是不能解决问题.马老板很大气,又买了3台服务器,让小明做个集群分流一下. 集群是什么? 是一种计算机系统,它通过一 ...

  9. [CISCN2019 华北赛区 Day2 Web1]Hack World 1详解

    打开题目, 我们开始尝试注入, 输入0回显Error Occured When Fetch Result. 输入1回显Hello, glzjin wants a girlfriend. 输入2回显Do ...

  10. day22 Pyhton学习 re模块和正则表达式

    正则表达式本身也和python没有什么关系,就是匹配字符串内容的一种规则. 官方定义:正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个" ...