LINK:拍卖



比赛的时候 前面时间浪费的有点多 写这道题的时候 没剩多少时间了。

随便设了一个状态 就开始做了。

果然需要认真的思考。其实 从我的状态的状态转移中可以看出所有的结论。

这里 就不再赘述我那个爆零代码了.

一下把 有价值的东西简称为1 无价值的东西简称为 0

结论1:容易想到 答案一定是0,1串。考虑证明 当不存在k这个限制的时候 在先手 两次拿到1之间 后手一定可以拿到一个1 否则后手就拿先手的第二个1.

考虑存在k的时候 到达k之前有Vf>=Vs 如果此时前面的都选了 那么和上述局面一样。

如果没有选够 若此时Vf+1==Vs 那么此时必然后手为先手 那么根据上述局面 后手此时最多比先手多1 然后和之前抵消掉就变成0了。

反之 还是先手为先手 那么和上述局面一致。

所以先手最多比后手多拿1个.

结论2:显然先手不会拿0物品 那么那样转换先后手了 且自己价值没有增加且局面更差.

结论3:先手遇到1就会拿 如果没有拿 那么跟刚才的局面一样 且自己的价值降低了 拿的话局面不会比不拿差.

至此可以得到先手的策略 有1就拿遇到0就跳。

不需要得到后手的策略 因为只有先手拿过 后手才能拿 且此时后手变成先手。

当存在有k的情况 我们已知了 先手一定拿1遇到0跳过 此时 后手有拿0的机会且局面不会更差。

如果后手有一个不拿0 那么其实答案可以直接计算出来 即 到达k时前面的1的个数的奇偶性。

但是 可能后手有可能拿0 此时就是博弈问题了 我们不知道后手究竟拿不拿0.

一个dp 设f[i][j]表示对于[i,n]k值为j的胜者是先手还是后手0/1。对于先手的胜利显然为Vf-Vs=1 对于后手的胜利显然为Vf-Vs=0.

这样 利用刚才的先手的策略很容易退出状态转移方程. 暴力dp 就得到了40 points.

const int MAXN=5010;
int n,Q;
int f[MAXN][MAXN];
char a[MAXN];
int main()
{
//freopen("1.in","r",stdin);
gt(n);gt(Q);gc(a);
fep(n,1,i)
{
rep(1,n-i+1,j)
{
if(a[i]=='1')f[i][j]=f[i+1][j-1]^1;
else
{
if(j==n-i+1)f[i][j]=f[i+1][j-1];
else f[i][j]=min(f[i+1][j-1],f[i+1][j]);
}
}
}
rep(1,Q,i)put(f[1][read()]);
return 0;
}

由于状态是01 可以利用bitset来进行优化。

这样可以获得60 points.

const int MAXN=100010;
int n,Q;
char a[MAXN];
bitset<MAXN>s;
int main()
{
//freopen("1.in","r",stdin);
gt(n);gt(Q);gc(a);
fep(n,1,i)
{
if(a[i]=='1')s=(s<<1).flip(),s[0]=0;
else
{
int ww=s[n-i];
s=(s<<1)&s;
s[n-i+1]=ww;
}
}
rep(1,Q,i)
{
int x;gt(x);
int ww=s[x];
put(ww);
}
return 0;
}

100分的话需要利用平衡树来优化这个过程 不过我不太会写.

先咕了.

5.10 省选模拟赛 拍卖 博弈 dp的更多相关文章

  1. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  2. 6.10 省选模拟赛 小C的利是 高斯消元 矩阵行列式

    LINK:小C的利是 想起来把这道题的题解写了 .一个常识:利是在广东那边叫做红包. 关于行列式的题目 不过我不太会23333..口胡还是可以的. 容易想到10分的状压.不过没什么意思. 仔细观察要求 ...

  3. 4.3 省选模拟赛 序列游戏 dp

    可以发现 某一段被删除后状态难以表示 也难以链接起来. 考虑暴力 有40分的状压dp 暴力存状态 然后枚举转移即可.最后注意和f[0]这个状态取max 不然一分都没有. const int MAXN= ...

  4. 6.3 省选模拟赛 Decompose 动态dp 树链剖分 set

    LINK:Decompose 看起来很难 实际上也很难 考验选手的dp 树链剖分 矩阵乘法的能力. 容易列出dp方程 暴力dp 期望得分28. 对于链的情况 容易发现dp方程可以转矩阵乘法 然后利用线 ...

  5. 5.12 省选模拟赛 T2 贪心 dp 搜索 差分

    LINK:T2 这题感觉很套路 但是不会写. 区间操作 显然直接使用dp不太行 直接爆搜也不太行复杂度太高. 容易想到差分 由于使得整个序列都为0 那么第一个数也要i差分前一个数 强行加一个0 然后 ...

  6. 4.13 省选模拟赛 树 树形dp 卷积 NTT优化dp.

    考试的时候 看到概率 看到期望我就怂 推了一波矩阵树推自闭了 发现 边权点权的什么也不是. 想到了树形dp 维护所有边的断开情况 然后发现数联通块的和再k次方过于困难. 这个时候 应该仔细观察一下 和 ...

  7. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  8. 10.17 NOIP模拟赛

    目录 2018.10.17 NOIP模拟赛 A 咒语curse B 神光light(二分 DP) C 迷宫maze(次短路) 考试代码 B 2018.10.17 NOIP模拟赛 时间:1h15min( ...

  9. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

随机推荐

  1. linux系统配置常用命令top

    本人测试系统:centos7 命令名称:top Linux top命令用于实时显示 process 的动态. 参数:-b 批处理 -c 显示完整的治命令 -I 忽略失效过程 -s 保密模式 -S 累积 ...

  2. The Meaningless Game 思维题

    题目描述 Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesti ...

  3. C# 基于内容电影推荐项目(一)

    从今天起,我将制作一个电影推荐项目,在此写下博客,记录每天的成果. 其实,从我发布 C# 爬取猫眼电影数据 这篇博客后, 我就已经开始制作电影推荐项目了,今天写下这篇博客,也是因为项目进度已经完成50 ...

  4. appium升级操作

    在app自动化测试中经常会碰到,因为appium版本低而导致,appium客户端连接不到appium服务端等一系列错误~ 其实appium升级很简单的哦~ 打开cmd命令行终端,键入npm updat ...

  5. day06 可变不可变类型

    1.可变不可变类型 可变类型 定义:值改变,id不变,改的是原值 不可变类型 定义:值改变,id也变了,证明是产生了新的值没有改变原值 验证 x = 10 print(id(x)) x = 11 pr ...

  6. scrapy 源码解析 (一):启动流程源码分析(一)命令行启动

    前言 虽然爬虫的入门级编写并不难,但要让爬虫真正稳定可靠的运行起来,真不是一件容易的事.首先,要用到scrapy,就必须要读懂scrapy这个爬虫框架,如果连这个框架的执行逻辑都搞不懂,那么爬虫也很难 ...

  7. Lua-源码-字符串的resize函数-luaS_resize

    // 这里需要问一下:upval和一般的对象有什么区别?为什么要单独一个函数来处理? void luaC_linkupval (lua_State *L, UpVal *uv) { global_St ...

  8. Python Ethical Hacking - BACKDOORS(7)

    Handling Errors: If the client or server crashes, the connection will be lost. Backdoor crashes if: ...

  9. 并发编程AQS----共享锁

    Semaphore Semaphore 字面意思是信号量的意思,它的作用是控制访问特定资源的线程数目.应用场景:资源访问,服务限流. Semaphore 实现AbstractQueuedSynchro ...

  10. 洛谷 P1080 国王游戏 题解

    原题 传送门 思路 分析 我们先假设队伍如下: People left hand right hand Before \(S_a\) A \(a_1\) \(b_1\) B \(a_2\) \(b_2 ...