LINK:数字序列

这是一道论文题 我去看了一眼论文鸽的论文。

发现讲的还算能懂。可并堆的操作也讲的比较清晰。

对于这道题首先有一个小trick 我们给a数组全部减去其对应的下标这样我们求出来的b数组就可以不需要满足严格递增的条件了只要不降即可。

这样更有利于我们继续的思考 此时对于a序列单调不降的时候 显然a序列本身即是答案。

而对于a序列单调不升的时候 根据小学奥数 可以的出此时b为序列的中位数最优。

具体证明是这样的b序列完全小于a序列 b序列完全大于a序列 b序列先小于后大于a序列。

显然第三种情况代价<=前两种代价。

考虑在完成交叉的时候 \(b_k==a_k\)时此时最优。

所以可以证明 此时至少有一个位置 \(a_k==b_k\) 此时考虑k左边元素\(a_{k-1}\geq a_k\)

\(b_{k-1}\leq b_k\) 可以发现此时\(b_{k-1}\)取\(b_k\)最优。

而k右边元素同理。

当我们把k的位置移到最中间的时候可以发现是最优的 所以上述小学奥数成立。

依照这个思路我们可以发现 把序列分段 让每一段单调的是最优的即可。

假设现在有两端 其序列的最优值分别为x1 x2 x1>=x2 我们考虑此时将序列进行合并。

因为这两段不可能同时最优了 所以将其当成一段来解决。

他们同时也不满足不降 所以 按照第二种策略解决即可。

所以这道题变成了合并两个区间的数字并找出中位数 可以采用主席树 当然更快的还是可并堆。

const int MAXN=1000010;
int n,top;
int c[MAXN][2],d[MAXN],a[MAXN],b[MAXN];
ll ans;
struct wy
{
int l,r,rt;
int v,sz;
}s[MAXN];
inline int merge(int x,int y)
{
if(!x||!y)return x|y;
if(a[x]<a[y])swap(x,y);
c[x][1]=merge(c[x][1],y);
if(d[c[x][1]]>d[c[x][0]])swap(c[x][0],c[x][1]);
d[x]=d[c[x][1]]+1;
return x;
}
int main()
{
freopen("1.in","r",stdin);
get(n);rep(1,n,i)get(a[i]),a[i]-=i;
rep(1,n,i)
{
s[++top]=(wy){i,i,i,a[i],1};
while(top>1&&s[top].v<s[top-1].v)
{
s[top-1].rt=merge(s[top].rt,s[top-1].rt);
s[top-1].r=s[top].r;s[top-1].sz+=s[top].sz;
--top;int sz=s[top].r-s[top].l+1;
while(s[top].sz>sz/2+(sz&1))
{
s[top].rt=merge(c[s[top].rt][0],c[s[top].rt][1]);
--s[top].sz;
}
s[top].v=a[s[top].rt];
}
}
int flag=1;
rep(1,n,i)
{
if(s[flag].r<i)++flag;
ans+=abs(a[i]-a[s[flag].rt]);
b[i]=a[s[flag].rt];
}
printf("%lld\n",ans);
rep(1,n,i)printf("%d ",b[i]+i);
return 0;
}

luogu 4331 [BalticOI 2004]Sequence 数字序列的更多相关文章

  1. 洛谷P4331 [BOI2004] Sequence 数字序列 [左偏树]

    题目传送门 数字序列 题目描述 给定一个整数序列 a1​,a2​,⋅⋅⋅,an​ ,求出一个递增序列 b1​<b2​<⋅⋅⋅<bn​ ,使得序列 ai​ 和 bi​ 的各项之差的绝对 ...

  2. Luogu P4331 [BOI2004]Sequence 数字序列 (左偏树论文题)

    清晰明了%%% Fairycastle的博客 个人习惯把size什么的存在左偏树结点内,这样在外面好写,在里面就是模板(只用修改update). 可以对比一下代码(好像也差不多-) MY CODE # ...

  3. P4331 [BOI2004]Sequence 数字序列 (左偏树)

    [题目链接] https://www.luogu.org/problemnew/show/P4331 题目描述 给定一个整数序列\(a_1, a_2, ··· , a_n,\)求出一个递增序列\(b_ ...

  4. 洛谷$P4331\ [BOI2004]\ Sequence$ 数字序列 左偏树

    正解:左偏树 解题报告: 传送门$QwQ$ 开始看到的时候$jio$得长得很像之前做的一个$dp$,,, 但是$dp$那题是说不严格这里是严格? 不难想到我们可以让$a_{i},b_{i}$同时减去$ ...

  5. [BOI2004]Sequence 数字序列(左偏树)

    PS:参考了黄源河的论文<左偏树的特点及其应用> 题目描述:给定一个整数序列\(a_1, a_2, - , a_n\),求一个递增序列\(b_1 < b_2 < - < ...

  6. [BOI2004]Sequence 数字序列

    Description: Hint: \(n<=10^5\) Solution: 首先考虑b不严格递增时的做法 发现当\(a[i]\)递增时\(b[i]\)直接取\(a[i]\)即可,否则此时需 ...

  7. 洛谷P4331 [BOI2004]Sequence 数字序列(左偏树)

    传送门 感觉……不是很看得懂题解在说什么? 我们先把原数列$a_i-=i$,那么本来要求递增序列,现在只需要求一个非严格递增的就行了(可以看做最后每个$b_i+=i$,那么非严格递增会变为递增) 如果 ...

  8. luoguP4331 [BOI2004]Sequence 数字序列

    题意 大力猜结论. 首先将所有\(a_i\)变为\(a_i-i\),之后求不严格递增的\(b_i\),显然答案不变,最后\(b_i\)加上\(i\)即可. 考虑两种特殊情况: 1.\(a[]\)是递增 ...

  9. 2021.08.01 P4311 数字序列(左偏树)

    2021.08.01 P4311 数字序列(左偏树) [P4331 BalticOI 2004]Sequence 数字序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1 ...

随机推荐

  1. [USACO16OPEN]248 G——区间dp

    [USACO16OPEN]248 G 题目描述 Bessie likes downloading games to play on her cell phone, even though she do ...

  2. 分享一个集成.NET Core+Swagger+Consul+Polly+Ocelot+IdentityServer4+Exceptionless+Apollo+SkyWalking的微服务开发框架

    集成.NET Core+Swagger+Consul+Polly+Ocelot+IdentityServer4+Exceptionless+Apollo的微服务开发框架 Github源代码地址 htt ...

  3. Jmeter(十五) - 从入门到精通 - JMeter导入自定义的Jar包(详解教程)

    1.简介 原计划这一篇是介绍前置处理器的基础知识的,结果由于许多小伙伴或者童鞋们在微信和博客园的短消息中留言问如何引入自己定义的Jar包呢???我一一回复告诉他们和引入插件的Jar包一样的道理,一通百 ...

  4. Mysql常用sql语句(24)- delete 删除数据

    测试必备的Mysql常用sql语句系列 https://www.cnblogs.com/poloyy/category/1683347.html 前言 delete 也属于DML语句(数据操纵语句) ...

  5. Js 利用正则 在字符串中提取数字、替换非数字字符为指定字符串

    var s ="总金额4500元"; var num= s.replace(/[^-]/ig,""); alert(num);// 上述示例会把数字匹配到直接转 ...

  6. HDFS客户端环境准备

    一.下载Hadoop jar包至非中文路径 下载链接:https://hadoop.apache.org/releases.html 解压至非中文路径 二.配置Hadoop环境变量 配置HADOOP_ ...

  7. (八) SpringBoot起飞之路-整合Shiro详细教程(MyBatis、Thymeleaf)

    兴趣的朋友可以去了解一下前几篇,你的赞就是对我最大的支持,感谢大家! (一) SpringBoot起飞之路-HelloWorld (二) SpringBoot起飞之路-入门原理分析 (三) Sprin ...

  8. 史上最全的 jmeter 获取 jdbc 数据使用的四种方法

    jmeter使用jdbc协议获取数据库中数据,很多人都会用,因为大家在做测试的时候,有时候需要大量的用户进行登录,获取需要数据库中真实的数据用于测试,所以常常会用jdbc来获取数据库数据. 那从数据库 ...

  9. 【Python学习笔记七】从配置文件中读取参数

    将一些需要更改或者固定的内容存放在配置文件中,通过读取配置文件来获取参数,这样修改以及使用起来比较方便 1.首先是配置文件的写法如下一个environment.ini文件: 里面“[]”存放的是sec ...

  10. CSS过渡时间

    CSS过渡时间 基础知识 在了解CSS过渡时间之前,你应该先了解一下CSS的变形动画,可以参考之前的一篇博客. 我们的元素在属性发生变化时,如果没有特地的为它设置过渡时间,整个变化过程其实是以毫秒级别 ...