LINK:林克卡特树

作为树形dp 这道题已经属于不容易的级别了。

套上了Wqs二分 (反而更简单了 大雾

容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径.

\(f_{i,j}\)表示以i为根的子树内有j条边被删掉 可以发现这个状态难以转移。

需要换个状态 一个比较经典的做法是套用树的直径的那套来做 每个点向上传递单条链或者什么都不传来转移。

传递单条链可以在父亲的那个地方合成一条 然后钦定此条为以x为根的联通内的最大值 那么就可以从x所在父亲的那条边切断了。

或者 传递到父亲那里 再向上传单条链。

传双条链可以默认直接断开 相当于什么都不传。

这样各个联通块都容易dp出来代价了。

但x处还需要开一个状态表示以x在链上且不想上传递链的最大值。

那么只有三种 可以形象的描述为x的度数为0,1,2.

即设\(f_{i,j,0/1,2}\)分别表示此时断开k条链时分别为上述三个状态的最大值。

转移很容易 不再赘述 值得一提的是转移结束时 对于\(f_{x,1},f_{x,2}\)都需要再向\(f_{x,0}\)进行过渡转移。

这是\(n\cdot k^2\)的。

恰好分k个容易想到 Wqs二分 二分斜率切凸包即可。

复杂度\(n\cdot log Mx\)

code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-6
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
#define V vector
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=300010;
int n,len,k;
int fa[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1],e[MAXN<<1];
ll l,r,mid;
struct wy
{
ll s;int v;
inline wy friend operator +(wy a,wy b){return (wy){a.s+b.s,a.v+b.v};}
inline bool friend operator <(wy a,wy b){return a.s<b.s||(a.s==b.s&&a.v<b.v);}
}f[MAXN][3];
inline wy max(wy a,wy b){return a<b?b:a;}
inline void add(int x,int y,int z)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
e[len]=z;
}
inline void dfs(int x,int father)
{
fa[x]=father;
go(x)if(tn!=father)dfs(tn,x);
}
inline void dp(int x)
{
f[x][0]=(wy){0,0};f[x][1]=(wy){0,0};f[x][2]=(wy){mid,1};
go(x)if(tn!=fa[x])
{
dp(tn);
f[x][2]=max(f[x][2]+f[tn][0],f[x][1]+f[tn][1]+(wy){mid+e[i],1});
f[x][1]=max(f[x][1]+f[tn][0],f[x][0]+f[tn][1]+(wy){e[i],0});
f[x][0]=f[x][0]+f[tn][0];
}
f[x][0]=max(f[x][0],max(f[x][1]+(wy){mid,1},f[x][2]));
}
int main()
{
//freopen("1.in","r",stdin);
get(n);get(k)+1;
rep(2,n,i)
{
int get(x),get(y),get(z);
add(x,y,z);add(y,x,z);
r+=z>0?z:-z;
}
dfs(1,0);l=-r;
while(l<r)
{
mid=(l+r)>>1;
dp(1);
if(f[1][0].v>=k)r=mid;
else l=mid+1;
}
mid=r;dp(1);
printf("%lld\n",f[1][0].s-mid*k);
return 0;
}

P4383 [八省联考2018]林克卡特树 树形dp Wqs二分的更多相关文章

  1. 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)

    题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...

  2. BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)

    假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...

  3. luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)

    luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...

  4. P4383 [八省联考2018]林克卡特树lct

    题目链接 题意分析 一句话题意就是 : 让你选出\((k+1)\)条不相交的链 使得这些链的边权总和最大 (这些链可以是点) 我们考虑使用树形\(DP\) \(dp[i][j][0/1/2]\)表示以 ...

  5. P4383 [八省联考2018]林克卡特树lct 树形DP+凸优化/带权二分

    $ \color{#0066ff}{ 题目描述 }$ 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的 ...

  6. LuoguP4383 [八省联考2018]林克卡特树lct

    LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...

  7. [八省联考2018]林克卡特树lct——WQS二分

    [八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...

  8. 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分

    题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...

  9. [八省联考2018]林克卡特树lct

    题解: zhcs的那个题基本上就是抄这个题的,不过背包的分数变成了70分.. 不过得分开来写..因为两个数组不能同时满足 背包的话就是 $f[i][j][0/1]$表示考虑i子树,取j条链,能不能向上 ...

随机推荐

  1. JS断点调试,必备的javaScript的debug调试技巧

    1.断点调试是啥?难不难? 断点调试其实并不是多么复杂的一件事,简单的理解无外呼就是打开浏览器,打开sources找到js文件,在行号上点一下罢了.操作起来似乎很简单,其实很多人纠结的是,是在哪里打断 ...

  2. gulp 如何排除文件和文件夹

    在网上找了好久,很多用gulp-ignore来处理,或者!来处理 经验证,gulp-ignore没有效果,如果有大神路过,还请指教:!一般的写法只能排除单个文件,以下直接写结论 1.如何排除单个文件 ...

  3. 前端分页(js)

    //前端分页 var limit = 10; //每页显示数据条数 var total = $('#host_table').find('tr').length; var allPage = tota ...

  4. Pandas基础知识图谱

    所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片.该图谱只 ...

  5. shell进阶篇之字典和数组结合应用案例

    # 现在我们用字典结合数组来实现一个简单的远程管理机 远程管理机的需求:现在需要在一个管理机上实现下列两点内容: 1.需要可以实时查看现有项目运行状态 2.远程登陆任意一台机器 备注:现有的机器如下 ...

  6. Python之堡垒机

    本节内容 项目实战:运维堡垒机开发 前景介绍 到目前为止,很多公司对堡垒机依然不太感冒,其实是没有充分认识到堡垒机在IT管理中的重要作用的,很多人觉得,堡垒机就是跳板机,其实这个认识是不全面的,跳板功 ...

  7. Django 【基础篇】

    前戏 python Web程序 众所周知,对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端. #!/usr/bin/env python #cod ...

  8. oracle 12c数据库在Windows环境下的安装

    ​    因为菜鸟小白之前做着一些数据库审计产品的测试,接下来我会分享一些关于数据库安装和通过python的访问数据库的知识 安装 首先我们需要下载一个oracle 12c的安装程序,解压后右键点击“ ...

  9. (3)html-webpack-plugin的作用

    在内存中生成index.html页面 在前面的内容中我们已经知道了如何在内存中打包main.js并引入到页面中. 同样的,我们也可以把index.html也打包放入到内存中. 安装html-webpa ...

  10. ubuntu 下安装QQ TIM QQ轻聊版 微信 Foxmail 百度网盘 360压缩 WinRAR 迅雷极速版

    第1步,安装deepin-wine环境:上https://github.com/wszqkzqk/deepin-wine-ubuntu页面下载zip包(或用git方式克隆),解压到本地文件夹,在文件夹 ...