LINK:P5667 拉格朗日插值2

给出了n个连续的取值的自变量的点值 求 f(m+1),f(m+2),...f(m+n).

如果我们直接把f这个函数给插值出来就变成了了多项式多点求值 这个难度好像有点大。

不妨 直接考虑拉格朗日插值。

设此时要求f(k) 那么则有 \(\sum_{i=0}^nf(i)\frac{\Pi_{i\neq j}(k-j)}{\Pi_{i\neq j} (i-j)}\)

可以化简一下 \(f(k)=\sum_{i=0}^nf(i)\frac{ \Pi_{i\neq j}(k-j) \cdot (-1)^{k-i} }{fac_i\cdot fac_{n-i}}\)

其实还是可以化简的 \(f(k)=\sum_{i=0}^nf(i)\frac{ \Pi (k-j) \cdot (-1)^{k-i} }{fac_i\cdot fac_{n-i}}\cdot \frac{1}{k-i}\)

\(f(k)=\sum_{i=0}^nf(i)\frac{k!\cdot (-1)^{k-i} }{fac_i\cdot fac_{n-i}}\cdot \frac{1}{(k-i)\cdot (k-n-1)!}\)

再提出来一些项 \(f(k)=k!\cdot \frac{1}{(k-n-1)!}\sum_{i=0}^nf(i)\frac{(-1)^{k-i} }{fac_i\cdot fac_{n-i}}\cdot \frac{1}{(k-i)}\)

容易发现这类似于卷积的形式。

不过 如果直接做卷积会出现问题 因为卷积的时候i<=j 而并非i<=n.

需要解决这个问题 比较容易想到 把j放到靠后的位置就能得到贡献了。

那么其实就是 所以维护一个长度为2n的序列进行卷积即可。

这个时候 最好的方法就是 把两个多项式写下来 看一下卷积的过程。

分析一下每一个位置都应该是什么数字即可。

注意 卡常的话中间有一个求2n长度逆元的东西 可以采用前缀积后缀积的方法来优化成O(n).

但是 由于多项式长度2^20 还是跑的很慢.. 勉强卡过。

码力还行 出错的地方是 数组开小了 开了1e6 少开了一点 wa了3,4发 我tcl.

const int MAXN=1100010,G=3;
int lim,n,m,N;
int rev[MAXN];
ll f[MAXN],b[MAXN],a[MAXN];
ll fac[MAXN],pre[MAXN],suf[MAXN],inv[MAXN];
inline int ksm(ll b,int p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
p=p>>1;b=b*b%mod;
}
return cnt;
}
inline void NTT(ll *a,int op)
{
rep(0,lim-1,i)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int len=2;len<=lim;len=len<<1)
{
int mid=len>>1;
int wn=ksm(G,op==1?(mod-1)/len:mod-1-(mod-1)/len);
for(int j=0;j<lim;j+=len)
{
ll d=1;
for(int i=0;i<mid;++i)
{
ll x=a[i+j],y=a[i+j+mid]*d%mod;
a[i+j]=(x+y)%mod;a[i+j+mid]=(x-y+mod)%mod;
d=d*wn%mod;
}
}
}
if(op==-1)
{
int IN=ksm(lim,mod-2);
rep(0,lim-1,i)a[i]=a[i]*IN%mod;
}
}
int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);fac[0]=1;
rep(0,n,i)get(f[i]);
rep(1,n,i)fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
rep(0,n,i)a[i]=(f[i]*(((n-i)&1)?-1:1)%mod*inv[i]%mod*inv[n-i]%mod+mod)%mod;
pre[0]=1;N=n<<1|1;suf[N+1]=1;
rep(1,N,i)pre[i]=pre[i-1]*(m-n+i-1)%mod;
fep(N,1,i)suf[i]=suf[i+1]*(m+i-n-1)%mod;
ll IN=ksm(pre[N],mod-2);
rep(1,N,i)b[i]=pre[i-1]*suf[i+1]%mod*IN%mod;
lim=1;while(lim<N+N)lim=lim<<1;
rep(0,lim-1,i)rev[i]=rev[i>>1]>>1|((i&1)?lim>>1:0);
NTT(a,1);NTT(b,1);
rep(0,lim-1,i)a[i]=a[i]*b[i]%mod;
ll w=1;rep(m-n,m,i)w=w*i%mod;
b[n+1]=w;rep(n+2,N,i)b[i]=b[i-1]*(m+i-n-1)%mod*IN%mod*pre[i-n-2]%mod*suf[i-n]%mod;
NTT(a,-1);rep(n+1,N,i)printf("%lld ",a[i]*b[i]%mod);return 0;
}

中间的地方看起来确实比较ex... 这也是没有办法的事情。

luogu P5667 拉格朗日插值2 拉格朗日插值 多项式多点求值 NTT的更多相关文章

  1. 洛谷P5282 【模板】快速阶乘算法(多项式多点求值+MTT)

    题面 传送门 前置芝士 \(MTT\),多项式多点求值 题解 这题法老当初好像讲过--而且他还说这种题目如果模数已经给定可以直接分段打表艹过去 以下是题解 我们设 \[F(x)=\prod_{i=0} ...

  2. 洛谷P5050 【模板】多项式多点求值

    传送门 人傻常数大.jpg 因为求逆的时候没清零结果调了几个小时-- 前置芝士 多项式除法,多项式求逆 什么?你不会?左转你谷模板区,包教包会 题解 首先我们要知道一个结论\[f(x_0)\equiv ...

  3. 【洛谷P5050】 【模板】多项式多点求值

    code: #include <bits/stdc++.h> #define ll long long #define ull unsigned long long #define set ...

  4. 多项式的各类计算(多项式的逆/开根/对数/exp/带余除法/多点求值)

    预备知识:FFT/NTT 多项式的逆 给定一个多项式 F(x)F(x)F(x),请求出一个多项式 G(x)G(x)G(x),满足 F(x)∗G(x)≡1(mod xn)F(x)*G(x) \equiv ...

  5. [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂

    多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...

  6. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  7. Luogu 4781 【模板】拉格朗日插值

    模板题. 拉格朗日插值的精髓在于这个公式 $$f(x) = \sum_{i = 1}^{n}y_i\prod _{j \neq i}\frac{x - x_i}{x_j - x_i}$$ 其中$(x_ ...

  8. 拉格朗日插值和牛顿插值 matlab

    1. 已知函数在下列各点的值为   0.2 0.4 0.6 0.8 1.0   0.98 0.92 0.81 0.64 0.38 用插值法对数据进行拟合,要求给出Lagrange插值多项式和Newto ...

  9. 多项式函数插值:多项式形式函数求值的Horner嵌套算法

    设代数式序列 $q_1(t), q_2(t), ..., q_{n-1}(t)$ ,由它们生成的多项式形式的表达式(不一定是多项式): $$p(t)=x_1+x_2q_1(t)+...x_nq_1(t ...

随机推荐

  1. MySQL 事务 异常 事务隔离的级别

    MySQL 事务 异常 事务隔离的级别   事务 在你操作数据库的同时,有可能其他用户还会不断地对数据进行增删改查操作.为了避免并行进行时出现混乱,就产生了"事务".事务就是要保证 ...

  2. Mysql查询语句执行过程

    Mysql查询语句执行过程   Mysql分为server层和存储引擎两部分,或许可以再加一层连接层   连接层(器) Mysql使用的是典型的C/S架构.连接器通过典型的TCP握手完成连接. 需要注 ...

  3. 实现 React Hooks

    实现 React Hooks UI 开发有两个问题: 展示复用 逻辑复用 展示复用目前基本使用组件化来解决,逻辑复用一直以来都没有特别好的解决方案.React 从一开始的 mixin ,到 高阶组件 ...

  4. UVA11383 Golden Tiger Claw KM算法

    题目链接:传送门 分析 这道题乍看上去没有思路,但是我们仔细一想就会发现这道题其实是一个二分图最大匹配的板子 我们可以把这道题想象成将男生和女生之间两两配对,使他们的好感度最大 我们把矩阵中的元素\( ...

  5. VS2017未能添加对"System.Drawing.dll"的引用

    问题: 解决方法:在程序集中找到System.Drawing.dll然后勾选引用.

  6. 0ctf_2016 _Web_unserialize

    0x01 拿到题目第一件事是进行目录扫描,看看都有哪些目录,结果如下: 不少,首先有源码,我们直接下载下来,因为有源码去分析比什么都没有更容易分析出漏洞所在. 通过这个知道,它一共有这么几个页面,首页 ...

  7. CSS 的层叠上下文是什么

    层叠上下文是 HTML 中的一个三维的概念,每个层叠上下文中都有一套元素的层叠排列顺序.页面根元素天生具有层叠上下文,所以整个页面处于一个“层叠结界”中. 层叠上下文的创建: 页面根元素:html z ...

  8. Java 字符串比较、拼接问题

    @ 目录 1.字符串的比较 1. 1 字符串常量池 1.2 String类型的比较方式 1.3 String的创建方式 1.3.1 直接使用"="进行赋值 1.3.2 使用&quo ...

  9. CMDB01 /paramiko模块、项目概述、项目架构、项目实现

    CMDB01 /paramiko模块.项目概述.项目架构.项目实现 目录 CMDB01 /paramiko模块.项目概述.项目架构.项目实现 1. paramiko 2. 基于xshell连接服务器 ...

  10. db2数据库字段更新当前时间

    db2数据库中想要将字段的时间通过sql语句的方式更新: 例如: Update tablename set 字段1='打酱油', 字段2 = TO_CHAR(current timestamp,'YY ...