P1313 [NOIP2010初赛]烽火传递
时间: 1000ms / 空间: 131072KiB / Java类名: Main

描述

  烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上。一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情。在某两座城市之间有n个烽火台,每个烽火台发出信号都有一定的代价。为了使情报准确的传递,在m个烽火台中至少要有一个发出信号。现输入n、m和每个烽火台发出的信号的代价,请计算总共最少需要花费多少代价,才能使敌军来袭之时,情报能在这两座城市之间准确的传递。

输入格式

第一行有两个数n,m分别表示n个烽火台,在m个烽火台中至少要有一个发出信号。
第二行为n个数,表示每一个烽火台的代价。

输出格式

一个数,即最小代价。

测试样例1

输入

5 3 
1 2 5 6 2

输出

4

备注

1<=n,m<=1,000,000

先上50分代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=5e3+;
const int inf=2e9;
int n,m,a[N*];
int dp[N][N];
int dfs(int x,int y){//dp[x][y]表示选到第x个,已经空了y个(没有发出信号)
if(y==m) return inf;
if(x==n+) return ;
if(dp[x+][y+]!=-) dp[x][y]=dp[x+][y+];
else dp[x][y]=dfs(x+,y+);
if(dp[x+][]!=-) dp[x][y]=min(dp[x][y],dp[x+][]+a[x+]);
else dp[x][y]=min(dp[x][y],dfs(x+,)+a[x+]);
return dp[x][y];
}
int main(){
memset(dp,-,sizeof dp);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
dfs(,);
printf("%d",dp[][]);
return ;
}

前言:

地址:https://baike.baidu.com/link?url=Q1N9tP7fq-tZ3K8K6WWlPChsloP_NHdd_Yydv74xa4NtJZw6uKYxrRM5LndT7foxrrRjQJe6PoeTVdtc9_62uSuKZwdmvpc_-G3eAVkXQyHv_Py9hO4iox3k2yell059

自己对于单调队列的一点理解:

        for(;l<r&&i-q[l]>m;l++);//队列里一定要有一个元素且不合法才出队(删除前面)
f[i]=f[q[l]]+a[i];//用队首来更新当前f[i]的答案
for(;l<r&&f[q[r]]>f[i];r--);//用当前的f[i]去更新队尾,使队列保持单调性(删除后面)
q[++r]=i;//进队

解析:

设f[i]表示点燃当前位置烽火台,且前i个满足要求的最小代价。

显然就有f[i]=min(f[j])+a[i](i-m<=j<=i-1)。

当然,这会超时,所以要有优化。

优化一:肯定是从前m个里选小的,涉及到区间最小值,可用线段树,时间复杂度将为O(n log m)。

优化二:同样因为要选前m个最小的,使用单调队列,队列里存有不超过m个长度单位的值,每次取队首,进队时维护队列使其单调不下降,复杂度将为O(n)。

(这里主要讲解 优化二即单调队列)

AC代码:

#include<cstdio>
#include<algorithm>
using namespace std;
inline const int read(){
register int x=,f=;
register char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
const int N=1e6+;
int n,m,l,r,a[N],f[N],q[N<<];
int main(){
n=read();m=read();
for(int i=;i<=n;i++) a[i]=read();
l=r=;
for(int i=;i<=n;i++){
for(;l<r&&i-q[l]>m;l++);
f[i]=f[q[l]]+a[i];
for(;l<r&&f[q[r]]>f[i];r--);
q[++r]=i;
}
int ans=0x7fffffff;
for(int i=n-m+;i<=n;i++) ans=min(ans,f[i]);
printf("%d",ans);
return ;
}

 

 

[NOIP2010初赛]烽火传递+单调队列详细整理的更多相关文章

  1. [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)

    传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...

  2. 【生活没有希望】NOIP2010初赛 烽火传递 smartoj1475

    整天初赛题做做,生活没有希望 用单调队列优化的dp 因为满足后来的总比先来的(在某些方面)更优 所以能用单调队列 n2变成n #include <cstdio> ],b[],c[]; in ...

  3. 【LOJ#10180】烽火传递 单调队列+dp

    题目大意:给定一个 N 个非负整数数组成的序列,每个点有一个贡献值,现选出其中若干数,使得每连续的 K 个数中至少有一个数被选,要求选出的数贡献值最小. 题解:设 \(dp[i]\) 表示考虑了序列前 ...

  4. joyoi tyvj1313 [NOIP2010初赛]烽火传递

    单调队列优化dp #include <iostream> #include <cstdio> using namespace std; int dp[1000005], n, ...

  5. 2018.09.06 烽火传递(单调队列优化dp)

    描述 烽火台是重要的军事防御设施,一般建在交通要道或险要处.一旦有军情发生,则白天用浓烟,晚上有火光传递军情. 在某两个城市之间有 n 座烽火台,每个烽火台发出信号都有一定的代价.为了使情报准确传递, ...

  6. 习题:烽火传递(DP+单调队列)

    烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...

  7. 刷题总结——烽火传递(单调队列+dp)

    题目: 题目描述 烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有 n 个烽火台,每个烽火 ...

  8. 【烽火传递】dp + 单调队列优化

    题目描述 烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有 n 个烽火台,每个烽火台发出信 ...

  9. 烽火传递【单调队列优化dp】

    题目大意: 1.给出长度为n的数组,要求每m个连续的元素之间必须选一个值作为代价,求该数组的最小代价. 题解思路: 1.显然是线性dp,dp[i]表示选择第 i 个元素时的最小总代价.很明显状态转移方 ...

随机推荐

  1. iOS 9 使用HTTP的方法

    问题 在ios 9中使用HTTP请求,Xcode就会抛出下面的Exception: App Transport Security has blocked a cleartext HTTP (http: ...

  2. Base64与Bitmap转换

    Base64与Bitmap互转 /** * 将base64转为bitmap * * @param string * @return */ public Bitmap stringtoBitmap(St ...

  3. 单例模式-用GCD实现

    用GCD实现单例模式的步骤: 步骤1. 创建头文件 XZSingleton.h,里面代码如下: // .h文件 #define XZSingletonH(name) + (instancetype)s ...

  4. 代码合并工具——Beyond Compare

    由于公司现在人比较多,存在多个小组同时开发一个项目的情况.为避免不同小组之间代码的冲突,我们的SVN采用了打分支的情况. 这造成我们自己小组的内容上线后要合并到不同的分支和主干上去. 于是就找了这个合 ...

  5. 挖一挖C#中那些我们不常用的东西之系列(4)——GetHashCode,ExpandoObject

    这篇继续分享下GetHashCode和ExpandoObject这两个比较好玩的方法. 一:GetHashCode 从MSDN上可以看到的解释是:用作特定类型的哈希函数,也就是说任何对象的实例都会有一 ...

  6. PHP 5.3.0以上推荐使用mysqlnd驱动

    1. 什么是 mysqlnd 驱动 ? PHP 手册上的描述 : MySQL Native Driver is a replacement for the MySQL Client Library ( ...

  7. 烂泥:KVM、kickstart与nginx集成

    本文由秀依林枫提供友情赞助,首发于烂泥行天下. 前几篇文章介绍了FTP.NFS与KVM.kickstart集成的案例,从这篇文章开始,我们来介绍HTTP方式与KVM.kickstart集成. HTTP ...

  8. android:context,getApplicationContext()生命周期

    getApplicationContext() 返回应用的上下文,生命周期是整个应用,应用摧毁它才摧毁Activity.this的context 返回当前activity的上下文,属于activity ...

  9. LINUX下NFS系统的安装配置

    准备:NFS系统服务器IP 192.168.135.1 ,NFS共享目录/mnt/NFS 一.安装NFS 查看nfs是否安装 #rpm -qa | grep nfs 若没有则安装nfs包 #yum i ...

  10. 彻底解决mysql中文乱码的办法,修改mysql解压缩版(免安装版或zip版)字符编码

    MySQL会出现中文乱码的原因不外乎下列几点:1.server本身设定问题,例如server字符编码还停留在latin12.table的语系设定问题(包含character与collation)3.客 ...