Mahout源码分析之 -- QR矩阵分解
一、算法原理
请参考我在大学时写的《QR方法求矩阵全部特征值》,其包含原理、实例及C语言实现:http://www.docin.com/p-114587383.html
二、源码分析
这里有一篇文章《使用MapRedece进行QR分解的步骤》可以看看
/**
For an <tt>m x n</tt> matrix <tt>A</tt> with <tt>m >= n</tt>, the QR decomposition is an <tt>m x n</tt>
orthogonal matrix <tt>Q</tt> and an <tt>n x n</tt> upper triangular matrix <tt>R</tt> so that
<tt>A = Q*R</tt>.
<P>
The QR decomposition always exists, even if the matrix does not have
full rank, so the constructor will never fail. The primary use of the
QR decomposition is in the least squares solution of non-square systems
of simultaneous linear equations. This will fail if <tt>isFullRank()</tt>
returns <tt>false</tt>.
*/ public class QRDecomposition implements QR {
private final Matrix q;
private final Matrix r;
private final boolean fullRank;
private final int rows;
private final int columns; /**
* Constructs and returns a new QR decomposition object; computed by Householder reflections; The
* decomposed matrices can be retrieved via instance methods of the returned decomposition
* object.
*
* @param a A rectangular matrix.
* @throws IllegalArgumentException if <tt>A.rows() < A.columns()</tt>.
*/
public QRDecomposition(Matrix a) { rows = a.rowSize();//m
int min = Math.min(a.rowSize(), a.columnSize());
columns = a.columnSize();//n Matrix qTmp = a.clone(); boolean fullRank = true; r = new DenseMatrix(min, columns); for (int i = 0; i < min; i++) {
Vector qi = qTmp.viewColumn(i);
double alpha = qi.norm(2);
if (Math.abs(alpha) > Double.MIN_VALUE) {
qi.assign(Functions.div(alpha));
} else {
if (Double.isInfinite(alpha) || Double.isNaN(alpha)) {
throw new ArithmeticException("Invalid intermediate result");
}
fullRank = false;
}
r.set(i, i, alpha); for (int j = i + 1; j < columns; j++) {
Vector qj = qTmp.viewColumn(j);
double norm = qj.norm(2);
if (Math.abs(norm) > Double.MIN_VALUE) {
double beta = qi.dot(qj);
r.set(i, j, beta);
if (j < min) {
qj.assign(qi, Functions.plusMult(-beta));
}
} else {
if (Double.isInfinite(norm) || Double.isNaN(norm)) {
throw new ArithmeticException("Invalid intermediate result");
}
}
}
}
if (columns > min) {
q = qTmp.viewPart(0, rows, 0, min).clone();
} else {
q = qTmp;
}
this.fullRank = fullRank;
} /**
* Generates and returns the (economy-sized) orthogonal factor <tt>Q</tt>.
*
* @return <tt>Q</tt>
*/
@Override
public Matrix getQ() {
return q;
} /**
* Returns the upper triangular factor, <tt>R</tt>.
*
* @return <tt>R</tt>
*/
@Override
public Matrix getR() {
return r;
} /**
* Returns whether the matrix <tt>A</tt> has full rank.
*
* @return true if <tt>R</tt>, and hence <tt>A</tt>, has full rank.
*/
@Override
public boolean hasFullRank() {
return fullRank;
} /**
* Least squares solution of <tt>A*X = B</tt>; <tt>returns X</tt>.
*
* @param B A matrix with as many rows as <tt>A</tt> and any number of columns.
* @return <tt>X</tt> that minimizes the two norm of <tt>Q*R*X - B</tt>.
* @throws IllegalArgumentException if <tt>B.rows() != A.rows()</tt>.
*/
@Override
public Matrix solve(Matrix B) {
if (B.numRows() != rows) {
throw new IllegalArgumentException("Matrix row dimensions must agree.");
} int cols = B.numCols();
Matrix x = B.like(columns, cols); // this can all be done a bit more efficiently if we don't actually
// form explicit versions of Q^T and R but this code isn't so bad
// and it is much easier to understand
Matrix qt = getQ().transpose();
Matrix y = qt.times(B); Matrix r = getR();
for (int k = Math.min(columns, rows) - 1; k >= 0; k--) {
// X[k,] = Y[k,] / R[k,k], note that X[k,] starts with 0 so += is same as =
x.viewRow(k).assign(y.viewRow(k), Functions.plusMult(1 / r.get(k, k))); // Y[0:(k-1),] -= R[0:(k-1),k] * X[k,]
Vector rColumn = r.viewColumn(k).viewPart(0, k);
for (int c = 0; c < cols; c++) {
y.viewColumn(c).viewPart(0, k).assign(rColumn, Functions.plusMult(-x.get(k, c)));
}
}
return x;
} /**
* Returns a rough string rendition of a QR.
*/
@Override
public String toString() {
return String.format(Locale.ENGLISH, "QR(%d x %d,fullRank=%s)", rows, columns, hasFullRank());
}
}
Mahout源码分析之 -- QR矩阵分解的更多相关文章
- Mahout源码分析之 -- 文档向量化TF-IDF
fesh个人实践,欢迎经验交流!Blog地址:http://www.cnblogs.com/fesh/p/3775429.html Mahout之SparseVectorsFromSequenceFi ...
- Mahout源码分析:并行化FP-Growth算法
FP-Growth是一种常被用来进行关联分析,挖掘频繁项的算法.与Aprior算法相比,FP-Growth算法采用前缀树的形式来表征数据,减少了扫描事务数据库的次数,通过递归地生成条件FP-tree来 ...
- mahout源码分析之Decision Forest 三部曲之二BuildForest(1)
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. BuildForest是在mahout-examples-0.7-job.jar包的org\apache ...
- mahout源码分析之DistributedLanczosSolver(五)Job over
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 1. Job 篇 接上篇,分析到EigenVerificationJob的run方法: public i ...
- mahout源码分析之DistributedLanczosSolver(六)完结篇
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 接上篇,分析完3个Job后得到继续往下:其实就剩下两个函数了: List<Map.Entry< ...
- mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...
- mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...
- zxing源码分析——QR码部分
Android应用横竖屏切换 zxing源码分析——DataMatrix码部分 zxing源码分析——QR码部分 2013-07-10 17:16:03| 分类: 默认分类 | 标签: |字号大中 ...
- mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...
随机推荐
- mysql workbench is well-designed
我用过mysql纯cli(command line),即纯命令行的执行环境,也用过navicat for mysql pro 破解版,甚至还用过比较高端的sqlyog,最后我还是选择了官方的workb ...
- ✡ leetcode 168. Excel Sheet Column Title 26进制数字 --------- java
Given a positive integer, return its corresponding column title as appear in an Excel sheet. For exa ...
- js中的this指针(二)
在 js 中声明并定义一个函数后,除了定义时传入的形式参数,函数还会接收到 2 个附加的参数:this 和 arguments. this 指针的值取决于调用时的模式. 当这个函数被保存为对象的一个属 ...
- eclipse 使用(一)单步调试
昨天终于将取数据的流程走通了.但是没有成功获得数据.原因是,把服务器中的数据库还原到了本地.而测试数据是写到了本地.把数据给覆盖了.早上来了之后,赶紧在服务器上把数据弄了一下. 之后开始跑代码. 项目 ...
- [solr] - spell check
solr提供了一个spell check,又叫suggestions,可以用于查询输入的自动完成功能auto-complete. 参考文献: https://cwiki.apache.org/conf ...
- Oracle导入和导出
导出:EXP userid=<username>/<password>@<service_name> file=<dmpname> e.g.exp sa ...
- mysql日志详细解析
MySQL日志: 主要包含:错误日志.查询日志.慢查询日志.事务日志.二进制日志: 日志是mysql数据库的重要组成部分.日志文件中记录着mysql数据库运行期间发生的变化:也就是说用来记录mysql ...
- C#微信json结构接收参数 转载
http://blog.csdn.net/u010773333/article/details/48524155 发素材的时间要上传资源故此要用json格式数据,需要转化. 微信服务器交互基本上都是j ...
- 分析Tornado的协程实现
转自:http://www.binss.me/blog/analyse-the-implement-of-coroutine-in-tornado/ 什么是协程 以下是Wiki的定义: Corouti ...
- DataTable排序(转)
DataTable 排序 DataRow[] rows = dataTable1.Select("", "ord asc"); DataTable t ...