一、算法原理

请参考我在大学时写的《QR方法求矩阵全部特征值》,其包含原理、实例及C语言实现:http://www.docin.com/p-114587383.html

二、源码分析

这里有一篇文章《使用MapRedece进行QR分解的步骤》可以看看

/**
For an <tt>m x n</tt> matrix <tt>A</tt> with <tt>m >= n</tt>, the QR decomposition is an <tt>m x n</tt>
orthogonal matrix <tt>Q</tt> and an <tt>n x n</tt> upper triangular matrix <tt>R</tt> so that
<tt>A = Q*R</tt>.
<P>
The QR decomposition always exists, even if the matrix does not have
full rank, so the constructor will never fail. The primary use of the
QR decomposition is in the least squares solution of non-square systems
of simultaneous linear equations. This will fail if <tt>isFullRank()</tt>
returns <tt>false</tt>.
*/ public class QRDecomposition implements QR {
private final Matrix q;
private final Matrix r;
private final boolean fullRank;
private final int rows;
private final int columns; /**
* Constructs and returns a new QR decomposition object; computed by Householder reflections; The
* decomposed matrices can be retrieved via instance methods of the returned decomposition
* object.
*
* @param a A rectangular matrix.
* @throws IllegalArgumentException if <tt>A.rows() < A.columns()</tt>.
*/
public QRDecomposition(Matrix a) { rows = a.rowSize();//m
int min = Math.min(a.rowSize(), a.columnSize());
columns = a.columnSize();//n Matrix qTmp = a.clone(); boolean fullRank = true; r = new DenseMatrix(min, columns); for (int i = 0; i < min; i++) {
Vector qi = qTmp.viewColumn(i);
double alpha = qi.norm(2);
if (Math.abs(alpha) > Double.MIN_VALUE) {
qi.assign(Functions.div(alpha));
} else {
if (Double.isInfinite(alpha) || Double.isNaN(alpha)) {
throw new ArithmeticException("Invalid intermediate result");
}
fullRank = false;
}
r.set(i, i, alpha); for (int j = i + 1; j < columns; j++) {
Vector qj = qTmp.viewColumn(j);
double norm = qj.norm(2);
if (Math.abs(norm) > Double.MIN_VALUE) {
double beta = qi.dot(qj);
r.set(i, j, beta);
if (j < min) {
qj.assign(qi, Functions.plusMult(-beta));
}
} else {
if (Double.isInfinite(norm) || Double.isNaN(norm)) {
throw new ArithmeticException("Invalid intermediate result");
}
}
}
}
if (columns > min) {
q = qTmp.viewPart(0, rows, 0, min).clone();
} else {
q = qTmp;
}
this.fullRank = fullRank;
} /**
* Generates and returns the (economy-sized) orthogonal factor <tt>Q</tt>.
*
* @return <tt>Q</tt>
*/
@Override
public Matrix getQ() {
return q;
} /**
* Returns the upper triangular factor, <tt>R</tt>.
*
* @return <tt>R</tt>
*/
@Override
public Matrix getR() {
return r;
} /**
* Returns whether the matrix <tt>A</tt> has full rank.
*
* @return true if <tt>R</tt>, and hence <tt>A</tt>, has full rank.
*/
@Override
public boolean hasFullRank() {
return fullRank;
} /**
* Least squares solution of <tt>A*X = B</tt>; <tt>returns X</tt>.
*
* @param B A matrix with as many rows as <tt>A</tt> and any number of columns.
* @return <tt>X</tt> that minimizes the two norm of <tt>Q*R*X - B</tt>.
* @throws IllegalArgumentException if <tt>B.rows() != A.rows()</tt>.
*/
@Override
public Matrix solve(Matrix B) {
if (B.numRows() != rows) {
throw new IllegalArgumentException("Matrix row dimensions must agree.");
} int cols = B.numCols();
Matrix x = B.like(columns, cols); // this can all be done a bit more efficiently if we don't actually
// form explicit versions of Q^T and R but this code isn't so bad
// and it is much easier to understand
Matrix qt = getQ().transpose();
Matrix y = qt.times(B); Matrix r = getR();
for (int k = Math.min(columns, rows) - 1; k >= 0; k--) {
// X[k,] = Y[k,] / R[k,k], note that X[k,] starts with 0 so += is same as =
x.viewRow(k).assign(y.viewRow(k), Functions.plusMult(1 / r.get(k, k))); // Y[0:(k-1),] -= R[0:(k-1),k] * X[k,]
Vector rColumn = r.viewColumn(k).viewPart(0, k);
for (int c = 0; c < cols; c++) {
y.viewColumn(c).viewPart(0, k).assign(rColumn, Functions.plusMult(-x.get(k, c)));
}
}
return x;
} /**
* Returns a rough string rendition of a QR.
*/
@Override
public String toString() {
return String.format(Locale.ENGLISH, "QR(%d x %d,fullRank=%s)", rows, columns, hasFullRank());
}
}

Mahout源码分析之 -- QR矩阵分解的更多相关文章

  1. Mahout源码分析之 -- 文档向量化TF-IDF

    fesh个人实践,欢迎经验交流!Blog地址:http://www.cnblogs.com/fesh/p/3775429.html Mahout之SparseVectorsFromSequenceFi ...

  2. Mahout源码分析:并行化FP-Growth算法

    FP-Growth是一种常被用来进行关联分析,挖掘频繁项的算法.与Aprior算法相比,FP-Growth算法采用前缀树的形式来表征数据,减少了扫描事务数据库的次数,通过递归地生成条件FP-tree来 ...

  3. mahout源码分析之Decision Forest 三部曲之二BuildForest(1)

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. BuildForest是在mahout-examples-0.7-job.jar包的org\apache ...

  4. mahout源码分析之DistributedLanczosSolver(五)Job over

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 1. Job 篇 接上篇,分析到EigenVerificationJob的run方法: public i ...

  5. mahout源码分析之DistributedLanczosSolver(六)完结篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 接上篇,分析完3个Job后得到继续往下:其实就剩下两个函数了: List<Map.Entry< ...

  6. mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...

  7. mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...

  8. zxing源码分析——QR码部分

    Android应用横竖屏切换 zxing源码分析——DataMatrix码部分 zxing源码分析——QR码部分 2013-07-10 17:16:03|  分类: 默认分类 |  标签: |字号大中 ...

  9. mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...

随机推荐

  1. C 内存管理初步了解

    1 首先变量了解几个概念 静态变量:用 static 修饰的变量 局部变量: 存储在栈区:作用域是函数块内:生存期是直到函数块结束 全局变量:存储在静态区:作用域是从定义到本源程序结束,生存期是运行期 ...

  2. appserv升级php

    安装thinkphp的时候提示必须要php5.3及以上 本地测试服务器使用的是appserv集成环境 所以要单独升级php 首先到官网下载http://php.net/downloads.php wi ...

  3. Chronos

    https://mesos.github.io/chronos/ https://github.com/mesos/chronos https://github.com/mesos/chronos/t ...

  4. 将数据集做成VOC2007格式用于Faster-RCNN训练

    1.命名 文件夹名VOC2007.图片名六位数字.将数据集相应的替换掉VOC2007中的数据. (Updated development kit, annotated test data )   2. ...

  5. [转]行者,一念一生,成功的背后!(给所有IT人)

    成功的背后,有着许多不为人知的故事,而正是这些夹杂着泪水和汗水的过去,才成就了一个个走向成功的普通人. 凌晨两点半,早 已习惯了一个人坐在电脑前的我,望着屏幕,任思绪在暗夜的包容下静静流淌,时光仿佛又 ...

  6. Delphi 使用CHM文件制作系统帮助文档(上下文感知帮助的制作)

    一.基础知识简介         使用帮助提示窗口或状态栏只能提供简单.单一的帮助,无法对某一模块或应用程序整体提供系统的 帮助,因此运行Windows应用程序,需要帮助时一般都可以通过执行帮助菜单获 ...

  7. Eclipse *版本

    关于Eclipse的版本介绍, Eclipse Standard 该版本是eclipse最基础的版本,适合Java se个人开发者.或希望根据自己需求配置插件的开发者使用. Eclipse IDE f ...

  8. httpwebrequest详解【转】

    http://blog.csdn.net/sjj2011/article/details/7823392 HttpWebRequest和HttpWebResponse类是用于发送和接收HTTP数据的最 ...

  9. http://www.iis.net/downloads/microsoft/url-rewrite

    http://www.iis.net/downloads/microsoft/url-rewrite iis  url重写模块.官方下载

  10. 通过DOM节点操作来获取表单信息

    这是之前突发奇想地用dom节点的关系来操作表单的故事.. 事情的经过是这样的,大概就是一个平台注册后有留言功能,管理员登录之后可以对这些留言进行回复.这个页面呢,就是通过foreach获取到数据库里的 ...