一、算法原理

请参考我在大学时写的《QR方法求矩阵全部特征值》,其包含原理、实例及C语言实现:http://www.docin.com/p-114587383.html

二、源码分析

这里有一篇文章《使用MapRedece进行QR分解的步骤》可以看看

/**
For an <tt>m x n</tt> matrix <tt>A</tt> with <tt>m >= n</tt>, the QR decomposition is an <tt>m x n</tt>
orthogonal matrix <tt>Q</tt> and an <tt>n x n</tt> upper triangular matrix <tt>R</tt> so that
<tt>A = Q*R</tt>.
<P>
The QR decomposition always exists, even if the matrix does not have
full rank, so the constructor will never fail. The primary use of the
QR decomposition is in the least squares solution of non-square systems
of simultaneous linear equations. This will fail if <tt>isFullRank()</tt>
returns <tt>false</tt>.
*/ public class QRDecomposition implements QR {
private final Matrix q;
private final Matrix r;
private final boolean fullRank;
private final int rows;
private final int columns; /**
* Constructs and returns a new QR decomposition object; computed by Householder reflections; The
* decomposed matrices can be retrieved via instance methods of the returned decomposition
* object.
*
* @param a A rectangular matrix.
* @throws IllegalArgumentException if <tt>A.rows() < A.columns()</tt>.
*/
public QRDecomposition(Matrix a) { rows = a.rowSize();//m
int min = Math.min(a.rowSize(), a.columnSize());
columns = a.columnSize();//n Matrix qTmp = a.clone(); boolean fullRank = true; r = new DenseMatrix(min, columns); for (int i = 0; i < min; i++) {
Vector qi = qTmp.viewColumn(i);
double alpha = qi.norm(2);
if (Math.abs(alpha) > Double.MIN_VALUE) {
qi.assign(Functions.div(alpha));
} else {
if (Double.isInfinite(alpha) || Double.isNaN(alpha)) {
throw new ArithmeticException("Invalid intermediate result");
}
fullRank = false;
}
r.set(i, i, alpha); for (int j = i + 1; j < columns; j++) {
Vector qj = qTmp.viewColumn(j);
double norm = qj.norm(2);
if (Math.abs(norm) > Double.MIN_VALUE) {
double beta = qi.dot(qj);
r.set(i, j, beta);
if (j < min) {
qj.assign(qi, Functions.plusMult(-beta));
}
} else {
if (Double.isInfinite(norm) || Double.isNaN(norm)) {
throw new ArithmeticException("Invalid intermediate result");
}
}
}
}
if (columns > min) {
q = qTmp.viewPart(0, rows, 0, min).clone();
} else {
q = qTmp;
}
this.fullRank = fullRank;
} /**
* Generates and returns the (economy-sized) orthogonal factor <tt>Q</tt>.
*
* @return <tt>Q</tt>
*/
@Override
public Matrix getQ() {
return q;
} /**
* Returns the upper triangular factor, <tt>R</tt>.
*
* @return <tt>R</tt>
*/
@Override
public Matrix getR() {
return r;
} /**
* Returns whether the matrix <tt>A</tt> has full rank.
*
* @return true if <tt>R</tt>, and hence <tt>A</tt>, has full rank.
*/
@Override
public boolean hasFullRank() {
return fullRank;
} /**
* Least squares solution of <tt>A*X = B</tt>; <tt>returns X</tt>.
*
* @param B A matrix with as many rows as <tt>A</tt> and any number of columns.
* @return <tt>X</tt> that minimizes the two norm of <tt>Q*R*X - B</tt>.
* @throws IllegalArgumentException if <tt>B.rows() != A.rows()</tt>.
*/
@Override
public Matrix solve(Matrix B) {
if (B.numRows() != rows) {
throw new IllegalArgumentException("Matrix row dimensions must agree.");
} int cols = B.numCols();
Matrix x = B.like(columns, cols); // this can all be done a bit more efficiently if we don't actually
// form explicit versions of Q^T and R but this code isn't so bad
// and it is much easier to understand
Matrix qt = getQ().transpose();
Matrix y = qt.times(B); Matrix r = getR();
for (int k = Math.min(columns, rows) - 1; k >= 0; k--) {
// X[k,] = Y[k,] / R[k,k], note that X[k,] starts with 0 so += is same as =
x.viewRow(k).assign(y.viewRow(k), Functions.plusMult(1 / r.get(k, k))); // Y[0:(k-1),] -= R[0:(k-1),k] * X[k,]
Vector rColumn = r.viewColumn(k).viewPart(0, k);
for (int c = 0; c < cols; c++) {
y.viewColumn(c).viewPart(0, k).assign(rColumn, Functions.plusMult(-x.get(k, c)));
}
}
return x;
} /**
* Returns a rough string rendition of a QR.
*/
@Override
public String toString() {
return String.format(Locale.ENGLISH, "QR(%d x %d,fullRank=%s)", rows, columns, hasFullRank());
}
}

Mahout源码分析之 -- QR矩阵分解的更多相关文章

  1. Mahout源码分析之 -- 文档向量化TF-IDF

    fesh个人实践,欢迎经验交流!Blog地址:http://www.cnblogs.com/fesh/p/3775429.html Mahout之SparseVectorsFromSequenceFi ...

  2. Mahout源码分析:并行化FP-Growth算法

    FP-Growth是一种常被用来进行关联分析,挖掘频繁项的算法.与Aprior算法相比,FP-Growth算法采用前缀树的形式来表征数据,减少了扫描事务数据库的次数,通过递归地生成条件FP-tree来 ...

  3. mahout源码分析之Decision Forest 三部曲之二BuildForest(1)

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. BuildForest是在mahout-examples-0.7-job.jar包的org\apache ...

  4. mahout源码分析之DistributedLanczosSolver(五)Job over

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 1. Job 篇 接上篇,分析到EigenVerificationJob的run方法: public i ...

  5. mahout源码分析之DistributedLanczosSolver(六)完结篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 接上篇,分析完3个Job后得到继续往下:其实就剩下两个函数了: List<Map.Entry< ...

  6. mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...

  7. mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...

  8. zxing源码分析——QR码部分

    Android应用横竖屏切换 zxing源码分析——DataMatrix码部分 zxing源码分析——QR码部分 2013-07-10 17:16:03|  分类: 默认分类 |  标签: |字号大中 ...

  9. mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...

随机推荐

  1. Linux分区介绍

    分区的大小主要取决于个人的选择,以下内容可能会有一定帮助:/boot - 200 MB 实际需求大约 100 MB,如果有多个内核/启动镜像同时存在,建议分配 200 或者 300 MB./ - 15 ...

  2. git相关

    进入到想要用git管理的project目录下 1.git init 意即该目录会被git监视一切的变动 同时生成一个.git文件夹下面存放了管理该project的一切必要信息 2.git add &l ...

  3. netmon,messageanalyzer

    Microsoft Message Analyzer Operating Guide https://technet.microsoft.com/en-us/library/jj649776.aspx ...

  4. JSBinding / Memory Management (GC)

    C# and JavaScript both have Garbage Collection (GC). They should not conflict with each other. Class ...

  5. Ubuntu Gnome16.04下安装cuda、theano和opencv

    1. 安装显卡驱动 ~$ lspci | grep controller00:02.0 VGA compatible controller: Intel Corporation Sky Lake In ...

  6. 生成new, old的 shell script

    #!/bin/bash #usage: ./create_dts_diff_v2.x.sh path1 path2 __new_dir=$1 __old_dir=$2 #=============== ...

  7. Spring中的ApplicationContext事件机制

    ApplicationContext的事件机制是观察者设计模式的实现,通过ApplicationEvent类和ApplicationListerner接口来实现. 1. 创建EmailEvent pu ...

  8. node版本管理器nvm(服务器项目相关)

    git项目 https://github.com/creationix/nvm 1.下载并安装NVM脚本 curl https://raw.githubusercontent.com/creation ...

  9. Spring Boot中使用Swagger2构建强大的RESTful API文档

    由于Spring Boot能够快速开发.便捷部署等特性,相信有很大一部分Spring Boot的用户会用来构建RESTful API.而我们构建RESTful API的目的通常都是由于多终端的原因,这 ...

  10. JVM参数(一)JVM类型以及编译器模式

    现在的JVM运行Java程序(和其它的兼容性语言)时在高效性和稳定性方面做的非常出色.自适应内存管理.垃圾收集.及时编译.动态类加载.锁优化——这里仅仅列举了某些场景下会发生的神奇的事情,但他们几乎不 ...