【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527
我就是一个大傻叉 微笑脸
#include<bits/stdc++.h>
#define inf 1000000000
#define ll long long
#define N 500005
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const double Pi=acos(-1.0);
struct CD{
double x,y;
CD(double a=,double b=){x=a,y=b;}
friend CD operator + (CD n1,CD n2){return CD(n1.x+n2.x,n1.y+n2.y);}
friend CD operator - (CD n1,CD n2){return CD(n1.x-n2.x,n1.y-n2.y);}
friend CD operator * (CD n1,CD n2){return CD(n1.x*n2.x-n1.y*n2.y,n1.x*n2.y+n1.y*n2.x);}
};
CD a[N],b[N],c[N],d[N];
int n,nn,bit;
double q[N];
void FFT(CD *a,int n,int type){
for(int i=,j=;i<n;i++){
if(j>i)swap(a[i],a[j]);
int k=n;
while(j&(k>>=))j&=~k;
j|=k;
}
for(int i=;i<=bit;i++){
CD w_n(cos(*type*Pi/(<<i)),sin(*type*Pi/(<<i)));
for(int j=;j<(<<bit);j+=(<<i)){
CD w(,);
for(int k=j;k<j+(<<(i-));k++){
CD tmp=a[k],tt=w*a[k+(<<(i-))];
a[k]=tmp+tt;a[k+(<<(i-))]=tmp-tt;
w=w*w_n;
}
}
}
if(type<)for(int i=;i<n;i++)a[i].x=a[i].x/n;
}
int main(){
n=read();nn=n;
for(int i=;i<n;i++)scanf("%lf",&q[i]),a[i]=CD(q[i],);
for(int i=;i<n;i++)b[i].x=1.0/(double)(i*i),b[i].y=;
n=*n-;bit=;
while((<<bit)<n)bit++;
n=<<bit;
b[]=CD();
for(int i=nn;i<n;i++)a[i]=CD(),b[i]=CD(); FFT(a,n,);FFT(b,n,);
for(int i=;i<n;i++)c[i]=a[i]*b[i];
FFT(c,n,-);
for(int i=;i<nn;i++)a[i]=CD(q[nn-i-],);
for(int i=nn;i<n;i++)a[i]=CD();
FFT(a,n,);
for(int i=;i<n;i++)d[i]=a[i]*b[i];
FFT(d,n,-); for(int i=;i<nn;i++)c[i].x-=d[nn-i-].x;
for(int i=;i<nn;i++)printf("%.5lf\n",c[i].x);
return ;
}
【bzoj3527】[Zjoi2014]力 FFT的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- 【BZOJ-3527】力 FFT
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1544 Solved: 89 ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
随机推荐
- MySQL基础二
视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,并可以将其当作表来使用. SELECT * FROM ( SEL ...
- rhel7初体验
Redhat7界面明显比之前的版本华丽了不少,貌似Redhat对普通用户的使用也要进行普及 可以在安装的同时修改root密码和创建新用户
- ASP.NET 自定义URL重写 分类: ASP.NET 2014-10-31 16:05 175人阅读 评论(0) 收藏
一.功能说明: 可以解决类似 http://****/news 情形,Url路径支持正则匹配. 二.操作步骤: 1.增加URL重写模块: using System; using System.IO; ...
- 随机生成字符串-php-js
js <script language="javascript"> function randomString(len) { len = len || 32; var ...
- 设定自动获得DNS服务器地址
情况说明:操作系统是Win7 64位, 网络是有线 1 2 3 4 5
- MapReduce中的分区方法Partitioner
在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,比如按照省份划分的话,需要把同一省份的数据放到一个文件中:按照性别划分的话,需要把同一性别的数据放到一个文件中.我们知道最终 ...
- Android 弹出对话框Dialog充满屏幕宽度
final View view = LayoutInflater.from(context).inflate(layoutId, null); final Dialog dialog = new Di ...
- JavaWeb监听器详解
1 JavaWeb监听器概述 在JavaWeb被监听的事件源为:ServletContext.HttpSession.ServletRequest,即三大域对象.有监听域对象"创建" ...
- Loadrunner中百分比模式和Vuser模式
从百分比模式切换到Vuser模式后,多个脚本时候,每个脚本的比例仍然维持不变: 切换到Vuser模式后: 如果在场景执行过程中需要动态添加Vuser,只能在Vuser模式下执行场景 如果需要执行“组” ...
- FileSeek文件内容搜索工具下载
Windows 内建的搜索功能十分简单,往往不能满足用户的需要.很多的第三方搜索工具因此诞生,比如 Everything,Locate32等. 而FileSeek也是一款不错的搜索工具,其不同于其他搜 ...