MATLAB 图像分类 Image Category Classification Using Bag of Features
使用MATLAB实现图像的识别,这是MATLAB官网上面的例子,学习一下。
http://cn.mathworks.com/help/vision/examples/image-category-classification-using-bag-of-features.html
这个算法叫做a bag of features approach for image category classification,用于识别小图片里面的是小狗、小猫、还是火车、船等。
首先要下载原材料,用于训练
% Location of the compressed data set
url = 'http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz';
% Store the output in a temporary folder
outputFolder = fullfile(tempdir, 'caltech101'); % define output folde
if ~exist(outputFolder, 'dir') % download only once
disp('Downloading 126MB Caltech101 data set...');
untar(url, outputFolder);
end
在这个例子中,对飞机、轮船、笔记本电脑三种事物的图片进行识别
rootFolder = fullfile(outputFolder, '101_ObjectCategories'); imgSets = [ imageSet(fullfile(rootFolder, 'airplanes')), ...
imageSet(fullfile(rootFolder, 'ferry')), ...
imageSet(fullfile(rootFolder, 'laptop')) ];
imageSet : Use imageSet class to help you manage the data. Since imageSet operates on image file locations, and therefore does not load all the images into memory, it is safe to use on large image collections.
在控制台用下面的代码查看imgSets的一些属性
{ imgSets.Description } % display all labels on one line
[imgSets.Count] % show the corresponding count of images
对图片集进行预处理
首先,每个集合的图片数量不一致
minSetCount = min([imgSets.Count]); % determine the smallest amount of images in a category % Use partition method to trim the set.
imgSets = partition(imgSets, minSetCount, 'randomize');
接下来,将这些图片分为用于训练的和用于检验的,分别是30%和70%
[trainingSets, validationSets] = partition(imgSets, 0.3, 'randomize');
创建一个训练的那个东东——Create a Visual Vocabulary and Train an Image Category Classifier
Bag of words is a technique adapted to computer vision from the world of natural language processing. Since images do not actually contain discrete words, we first construct a "vocabulary" of SURF features representative of each image category.
这个算法基于自然语言处理?什么鬼。。。 应该是和自然语言处理的结合。
分这么两步:
extracts SURF features from all images in all image categories
constructs the visual vocabulary by reducing the number of features through quantization of feature space using K-means clustering
bag = bagOfFeatures(trainingSets);
上面这句话提取图片中的特征,输出这些,每次训练会不一样
Creating Bag-Of-Features from 3 image sets.
--------------------------------------------
* Image set 1: airplanes.
* Image set 2: ferry.
* Image set 3: laptop. * Extracting SURF features using the Grid selection method.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128]. * Extracting features from 20 images in image set 1...done. Extracted 86144 features.
* Extracting features from 20 images in image set 2...done. Extracted 70072 features.
* Extracting features from 20 images in image set 3...done. Extracted 97888 features. * Keeping 80 percent of the strongest features from each image set. * Balancing the number of features across all image sets to improve clustering.
** Image set 2 has the least number of strongest features: 56058.
** Using the strongest 56058 features from each of the other image sets. * Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 168174
* Number of clusters (K) : 500 * Clustering...done. * Finished creating Bag-Of-Features
可视化,有点搞不懂了。。。到底在做什么
貌似是提取了500个特征,取某一图片,看看这个图片多大程度上有这些特征。
先说结果:

下面是代码:
Additionally, the bagOfFeatures object provides an encode method for counting the visual word occurrences in an image. It produced a histogram that becomes a new and reduced representation of an image.
This histogram forms a basis for training a classifier and for the actual image classification. In essence, it encodes an image into a feature vector.
img = read(imgSets(), );
featureVector = encode(bag, img); % Plot the histogram of visual word occurrences
figure
bar(featureVector)
title('Visual word occurrences')
xlabel('Visual word index')
ylabel('Frequency of occurrence')
然后创建图像的分类器
Encoded training images from each category are fed into a classifier training process invoked by the trainImageCategoryClassifier function. Note that this function relies on the multiclass linear SVM classifier from the Statistics and Machine Learning Toolbox™.
categoryClassifier = trainImageCategoryClassifier(trainingSets, bag);
输出这个:
Training an image category classifier for categories.
--------------------------------------------------------
* Category : airplanes
* Category : ferry
* Category : laptop * Encoding features for category ...done.
* Encoding features for category ...done.
* Encoding features for category ...done. * Finished training the category classifier. Use evaluate to test the classifier on a test set.
评估这个分类器的效果
confMatrix = evaluate(categoryClassifier, trainingSets);
输出这个,效果貌似很不错
Evaluating image category classifier for categories.
------------------------------------------------------- * Category : airplanes
* Category : ferry
* Category : laptop * Evaluating images from category ...done.
* Evaluating images from category ...done.
* Evaluating images from category ...done. * Finished evaluating all the test sets. * The confusion matrix for this test set is: PREDICTED
KNOWN | airplanes ferry laptop
--------------------------------------------
airplanes | 0.95 0.05 0.00
ferry | 0.00 1.00 0.00
laptop | 0.00 0.00 1.00 * Average Accuracy is 0.98.
用训练的素材检验当然效果很好,下面用之前分好的检验素材进行检验,默认返回的是“混淆矩阵”,所以要计算平均的分类精度。
confMatrix = evaluate(categoryClassifier, validationSets); % Compute average accuracy
mean(diag(confMatrix));
输出这个,效果还是很不错!
Evaluating image category classifier for categories.
------------------------------------------------------- * Category : airplanes
* Category : ferry
* Category : laptop * Evaluating images from category ...done.
* Evaluating images from category ...done.
* Evaluating images from category ...done. * Finished evaluating all the test sets. * The confusion matrix for this test set is: PREDICTED
KNOWN | airplanes ferry laptop
--------------------------------------------
airplanes | 0.85 0.13 0.02
ferry | 0.02 0.94 0.04
laptop | 0.04 0.02 0.94 * Average Accuracy is 0.91.
训练了,检验了,该上战场了!——Try the Newly Trained Classifier on Test Images
img = imread(fullfile(rootFolder, 'airplanes', 'image_0690.jpg'));
[labelIdx, scores] = predict(categoryClassifier, img); % Display the string label
categoryClassifier.Labels(labelIdx)
——完——
由于不懂算法,所以很多地方看不懂,无法扩展使用这个例子。
扩展阅读:
MATLAB官方文档:bagOfFeatures class
MATLAB 图像分类 Image Category Classification Using Bag of Features的更多相关文章
- Bag of Words/Bag of Features的Matlab源码发布
2010年11月19日 ⁄ 技术, 科研 ⁄ 共 1296字 ⁄ 评论数 26 ⁄ 被围观 4,150 阅读+ 由于自己以前发过一篇文章讲bow特征的matlab代码的优化的<Bag-Of-Wo ...
- OpenCV探索之路(二十八):Bag of Features(BoF)图像分类实践
在深度学习在图像识别任务上大放异彩之前,词袋模型Bag of Features一直是各类比赛的首选方法.首先我们先来回顾一下PASCAL VOC竞赛历年来的最好成绩来介绍物体分类算法的发展. 从上表我 ...
- Bag of Features (BOF)图像检索算法
1.首先.我们用surf算法生成图像库中每幅图的特征点及描写叙述符. 2.再用k-means算法对图像库中的特征点进行训练,生成类心. 3.生成每幅图像的BOF.详细方法为:推断图像的每一个特征点与哪 ...
- 图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories Am ...
- 浅析 Bag of Feature
Bag of Feature 是一种图像特征提取方法,它借鉴了文本分类的思路(Bag of Words),从图像抽象出很多具有代表性的「关键词」,形成一个字典,再统计每张图片中出现的「关键词」数量,得 ...
- matlab 局部特征检测与提取(问题与特征)
物体识别:SIFT 特征: 人脸识别:LBP 特征: 行人检测:HOG 特征: 0. 常见手工设计的低级别特征 manually designed low-level features 语音:高斯混合 ...
- 基于Tensorflow + Opencv 实现CNN自定义图像分类
摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...
- Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
背景 消息传递模型(Message Passing Model)基于拉普拉斯平滑假设(领居是相似的),试图聚合图中的邻居的信息来获取足够的依据,以实现更鲁棒的半监督节点分类. 图神经网络(Graph ...
- Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...
随机推荐
- REST实战:SeverClient项目+RESTful理论
理解一个新的技术,无疑就是使用它了,下面我们就通过一个可执行的demo来展现REST的原理和使用. 一 Demo 1.1 服务器端 1 主程序MainServer.java负责启动一个REST服务组件 ...
- 设置程序集(dll)引用路径,整洁美观
static class Program { //设置引用程序集路径 static Program() { AppDomain.CurrentDomain.SetData("PRIVATE_ ...
- CentOS7 基础配置
Centos 7 部分>>>>>>>>>>>>>>>>>>>>>>& ...
- 关于行内元素的margin padding一些说明;background-color的范围
①当对行内元素使用padding时,只有左右方向(正常)有效:竖直方向上,内边距对于该行内元素有效果,但是对其他元素无任何影响. ②当对行内元素使用margin时,只有左右方向有效,竖直方向无任何效果 ...
- faster alter table add column
Create a new table (using the structure of the current table) with the new column(s) included. execu ...
- InfoSet
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- implicit operator
class Digit { public Digit(double d) { val = d; } public double val; // ...other members // User-def ...
- 学习mongo系列(十)MongoDB 备份(mongodump)与恢复(mongorerstore) 监控(mongostat mongotop)
一.备份 在Mongodb中我们使用mongodump命令来备份MongoDB数据.该命令可以导出所有数据到指定目录中. mongodump命令可以通过参数指定导出的数据量级转存的服务器. mongo ...
- 自定义datagridview列,却提示DataGridView 控件中至少有一列没有单元格模板
哈哈,一个小误区,你看看设计窗体生成的代码,DataGridView的列不是GridViewColumn 而是DataGridViewTextBoxColumn你只要添加这个类型的对象就可以了,我也是 ...
- 25、java中观察者模式Observable和Observer
如果想要实现观察者模式,则必须依靠java.util包中提供的Observable类和Observer接口 观察者设计模式 现在很多的购房者都在关注着房子的价格变化,每当房子价格变化的时候,所有的购房 ...