Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

/*
矩阵快速幂裸题
*/
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = ;
ll sz,mod,n,f[maxn],a[maxn],ans[maxn];
struct mtx{
ll v[maxn][maxn];
void cler(){
memset(v,,sizeof(v));
}
mtx mul(mtx A,mtx B){
mtx C;
C.cler();
for(int i = ;i <= sz;i++){
for(int j = ;j <= sz;j++){
for(int k = ;k <= sz;k++){
C.v[i][j] = (C.v[i][j] + A.v[i][k] * B.v[k][j]) % mod;
}
}
}
return C;
}
mtx mi(mtx A,int n){
mtx R;
R.cler();
for(int i = ;i <= sz;i++) R.v[i][i] = ;
while(n){
if(n&) R = R.mul(R,A);
n >>= ;
A = A.mul(A,A);
}
return R;
}
void get_tr(mtx A){
memset(ans,,sizeof(ans));
for(int i = ;i <= sz;i++){
for(int j = ;j <= sz;j++){
ans[j] = (ans[j] + f[i] * A.v[i][j]) % mod;
}
}
}
};
int main(){
sz = ;
mod = ;
f[] = f[] = ;
a[] = a[] = ;
mtx A;
while(){
cin>>n;
if(n == -){
return ;
}
if(n <= ){
if(n==) cout<<<<endl;
if(n==||n==) cout<<<<endl;
continue;
}
A.cler();
for(int i = ;i <= sz;i++) A.v[i][] = a[i];
for(int i = ;i <= sz;i++) A.v[i-][i] = ;
A = A.mi(A,n-sz);
A.get_tr(A);
cout<<ans[]<<endl;
}
return ;
}

poj3070 Fibonacci的更多相关文章

  1. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  2. POJ3070 Fibonacci[矩阵乘法]【学习笔记】

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  3. 矩阵十题【六】 poj3070 Fibonacci

    题目链接:http://poj.org/problem? id=3070 题目大意:给定n和10000,求第n个Fibonacci数mod 10000 的值,n不超过2^31. 结果保留四位数字. 非 ...

  4. poj3070 Fibonacci 矩阵快速幂

    学了线代之后 终于明白了矩阵的乘法.. 于是 第一道矩阵快速幂.. 实在是太水了... 这差不多是个模板了 #include <cstdlib> #include <cstring& ...

  5. POJ3070 Fibonacci(矩阵快速幂加速递推)【模板题】

    题目链接:传送门 题目大意: 求斐波那契数列第n项F(n). (F(0) = 0, F(1) = 1, 0 ≤ n ≤ 109) 思路: 用矩阵乘法加速递推. 算法竞赛进阶指南的模板: #includ ...

  6. 2018.09.25 poj3070 Fibonacci(矩阵快速幂)

    传送门 矩阵快速幂板题,写一道来练练手. 这一次在poj做题总算没忘了改万能库. 代码: #include<iostream> #include<cstdio> #define ...

  7. poj3070 Fibonacci(矩阵快速幂)

    矩阵快速幂基本应用. 对于矩阵乘法与递推式之间的关系: 如:在斐波那契数列之中 f[i] = 1*f[i-1]+1*f[i-2]  f[i-1] = 1*f[i-1] + 0*f[i-2].即 所以, ...

  8. POJ3070:Fibonacci(矩阵快速幂模板题)

    http://poj.org/problem?id=3070 #include <iostream> #include <string.h> #include <stdl ...

  9. 一些特殊的矩阵快速幂 hdu5950 hdu3369 hdu 3483

    思想启发来自, 罗博士的根据递推公式构造系数矩阵用于快速幂 对于矩阵乘法和矩阵快速幂就不多重复了,网上很多博客都有讲解.主要来学习一下系数矩阵的构造 一开始,最一般的矩阵快速幂,要斐波那契数列Fn=F ...

随机推荐

  1. [NOIP2012] 提高组 洛谷P1081 开车旅行

    题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的 城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 ...

  2. libusb-win32简介~

    libusb-win32简介 libusb-win32 is a port of the USB library libusb (http://sf.net/projects/libusb/) to ...

  3. MATLAB自定义配置

    1.设置默认工作路径 一般来说MATLAB的默认工作路径是安装目录下的bin目录,但是,把这个作为自己的工作目录很不方便,以为里面已经有很多安装文件了,容易混淆: 每次打开再更改路径又太麻烦,所以最好 ...

  4. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  5. Python基本数据类型之tuple

    一.创建元组: ages = (11, 22, 33, 44, 55) ages = tuple((11, 22, 33, 44, 55)) 元组和列表几乎一样 元组的元素不可修改,但是元组元素的元素 ...

  6. python列表、元组、字典(四)

    列表 如:[11,22,33,44,44].['TangXiaoyue', 'bruce tang'] 每个列表都具备如下功能: class list(object): ""&qu ...

  7. CSS--值和单位

    等价颜色表 什么叫Web安全色 所谓的“web安全”颜色是指在256色计算机系统上总能避免抖动的颜色. Web安全颜色可以表示为RGB值为20%和51(相应的十六进制值为33)的倍数. 如果使用RGB ...

  8. jQuery 基础(3) -- jQuery 事件

    jQuery 是为事件处理特别设计的.什么是事件?页面对不同访问者的响应叫做事件.事件处理程序指的是当 HTML 中发生某些事件时所调用的方法.实例:在元素上移动鼠标.选取单选按钮点击元素在事件中经常 ...

  9. springMVC的注解@RequestParam与@PathVariable的区别

    1.在SpringMVC后台控制层获取参数的方式主要有两种, 一种是request.getParameter("name"),另外一种是用注解@RequestParam直接获取. ...

  10. 【转】jquery的extend和fn.extend

    jQuery为开发插件提拱了两个方法,分别是: jQuery.fn.extend(object); jQuery.extend(object); jQuery.extend(object); 为扩展j ...