%%matlab实现hog特征
%修改自http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html
%input: img
%output: final_descriptor clear all; close all; clc; %img=double(imread('lena.jpg'));
%img=imread('man.png');
img=imread('e:/work/matlab/data/252.jpg');
img=rgb2gray(img); %简单起见,彩图转灰度图。后续可以改进。
img=imresize(img, [128 64]);
img=double(img); [h, w, ~] = size(img); %下面是求cell
cell_size=8; %step*step个像素作为一个cell. cell_size=pixels_per_cell
orient=9; %方向直方图包含的方向数
angle_range=180/orient; %每个方向包含的角度数 h=round(h/cell_size)*cell_size;
w=round(w/cell_size)*cell_size;
img=img(1:h,1:w,:); %img = sqrt(img); %伽马校正。J=AI^r 此处取A=1,r=0.5 % 下面是求边缘
fy=[-1 0 1]; %定义竖直模版
fx=fy'; %定义水平模版 Gy=imfilter(img, fy, 'replicate'); %竖直梯度
Gx=imfilter(img, fx, 'replicate'); %水平梯度
Gmag=sqrt(Gx.^2+Gy.^2); %梯度幅值 %为每个cell计算其decriptor(梯度方向直方图,即一个1*orient规格的向量)
cell_descriptors=zeros(orient, h/cell_size, w/cell_size);
idx_y=1;
for y=1:cell_size:h
idx_x=1;
for x=1:cell_size:w
tmpx=Gx(y:y+cell_size-1, x:x+cell_size-1);
tmpy=Gy(y:y+cell_size-1, x:x+cell_size-1);
tmped=Gmag(y:y+cell_size-1,x:x+cell_size-1);
tmped=tmped/sum(sum(tmped)); %局部边缘强度归一化
cell_hist=zeros(1, orient); %当前cell_size*cell_size像素统计角度直方图,就是cell
for p=1:cell_size
for q=1:cell_size
ang=atan2(tmpy(p,q), tmpx(p,q)); %atan2返回的是[-pi,pi]之间的弧度值
ang=mod(ang*180/pi, 180); %先转角度,再划归到[0,180)之间。因为mod的参数现在不是整数,因此会大于179.
ang=ang+0.0000001; %防止ang为0 bin_id = ceil(ang/angle_range);%得到的bin_id \in [1,9]
cell_hist(bin_id)=cell_hist(bin_id)+tmped(p,q); %ceil向上取整,使用边缘强度加权。此处根据梯度方向进行vote,权值为梯度幅值
end
end
cell_descriptors(:,idx_y,idx_x) = cell_hist;
idx_x = idx_x + 1;
end
idx_y = idx_y + 1;
end %下面是计算feature,block_size*block_size个cell合成一个block
%比如block_size取2
[~, h, w]=size(cell_descriptors);
block_size=2; %cells_per_block=2,即每个block_size=2*8=16像素
stride=1;
h_max=floor((h-block_size)/stride)+1;
w_max=floor((w-block_size)/stride)+1;
block_descriptors=zeros(block_size*block_size*orient, h_max, w_max);
for i=1:h_max
for j=1:w_max
blk_mat=cell_descriptors(:,i:i+block_size-1, j:j+block_size-1);
normed_blk_mat=zz_normalize(blk_mat);
reshaped_blk_mat=reshape(normed_blk_mat, [1 block_size*block_size*orient]);
block_descriptors(:,i,j)=reshaped_blk_mat;
end
end %将block_descriptors进行拼接,得到final_descriptor
[d1,d2,d3]=size(block_descriptors);
dimensions=d1*d2*d3;
final_descriptor=zeros(1, dimensions);
k=1;
for i=1:d2
for j=1:d3
final_descriptor(k:k+d1-1)=block_descriptors(:,i,j);
k=k+d1;
end
end

matlab实现hog特征的更多相关文章

  1. HOG特征(Histogram of Gradient)总结(转载)

    整理一下我个人觉得比较好的HOG博文 博文1:OpenCV HOGDescriptor: 参数与图解 http://blog.csdn.NET/raodotcong/article/details/6 ...

  2. HOG特征(Histogram of Gradient)学习总结

    最近在做的项目有用到HOG+SVM这一方面的知识,参考相关论文和网上一些博文在此对HOG特征进行下总结. 参考资料: HOG的经典论文:Dalal N, Triggs B. Histograms of ...

  3. SVM+HOG特征训练分类器

    #1,概念 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类.以及回归分析. SVM的主要思想可以概括为两点:⑴它是针 ...

  4. 目标检测——HOG特征

    1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的 ...

  5. paper 80 :目标检测的图像特征提取之(一)HOG特征

    1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的 ...

  6. SVM中图像常用的HOG特征描述及实现

    转摘网址:http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html Hog参考网址:http://www.cnblogs.com/t ...

  7. HOG参数简介及Hog特征维数的计算(转)

    HOG构造函数 CV_WRAP HOGDescriptor() :winSize(64,128), blockSize(16,16), blockStride(8,8),      cellSize( ...

  8. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  9. 目标检测的图像特征提取之(一)HOG特征(转载)

    目标检测的图像特征提取之(一)HOG特征 zouxy09@qq.com http://blog.csdn.net/zouxy09 1.HOG特征: 方向梯度直方图(Histogram of Orien ...

随机推荐

  1. 运维利器-ClusterShell集群管理操作记录

    在运维实战中,如果有若干台数据库服务器,想对这些服务器进行同等动作,比如查看它们当前的即时负载情况,查看它们的主机名,分发文件等等,这个时候该怎么办?一个个登陆服务器去操作,太傻帽了!写个shell去 ...

  2. javascript中的链表结构

    1.定义 很多编程语言中数组的长度是固定的,就是定义数组的时候需要定义数组的长度,所以当数组已经被数据填满的时候,需要再加入新的元素就很困难.只能说在部分变成语言中会有这种情况,在javascript ...

  3. swift中第三方网络请求库Alamofire的安装与使用

    swift中第三方网络请求库Alamofire的安装与使用 Alamofire是swift中一个比较流行的网络请求库:https://github.com/Alamofire/Alamofire.下面 ...

  4. oracle小知识总结

    1,表列的五种约束 not null, unique,primary key, foreign key, check 2,权限分配 grant 权限 on 表 to 用户 3,表和视图的区别 视图是一 ...

  5. 转:openwrt中luci学习笔记

    原文地址:openwrt中luci学习笔记 最近在学习OpenWrt,需要在OpenWrt的WEB界面增加内容,本文将讲述修改OpenWrt的过程和其中遇到的问题. 一.WEB界面开发         ...

  6. 洛谷 1016 / codevs 1046 旅行家的预算

    https://www.luogu.org/problem/show?pid=1016 http://codevs.cn/problem/1046/ 题目描述 Description 一个旅行家想驾驶 ...

  7. 浅谈设计模式--装饰者模式(Decorator Pattern)

    挖了设计模式这个坑,得继续填上.继续设计模式之路.这次讨论的模式,是 装饰者模式(Decorator Pattern) 装饰者模式,有时也叫包装者(Wrapper),主要用于静态或动态地为一个特定的对 ...

  8. 实验三 敏捷开发与XP实践

    实验内容 1. XP基础 2. XP核心实践 3. 相关工具 实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2.完成实验 ...

  9. Ehcache 整合Spring 使用页面、对象缓存

    Ehcache 整合Spring 使用页面.对象缓存 Ehcache在很多项目中都出现过,用法也比较简单.一 般的加些配置就可以了,而且Ehcache可以对页面.对象.数据进行缓存,同时支持集群/分布 ...

  10. 翻译qmake文档(四) Building Common Project Types

    翻译qmake文档 目录 本章原英文文档:http://qt-project.org/doc/qt-5/qmake-common-projects.html 构建常见的项目类型        本章描述 ...