opencv5-objdetect之级联分类器
这是《opencv2.4.9tutorial.pdf》的objdetect module的唯一一个例子。
在opencv中进行人脸或者人眼 或者身体的检测 首先就是训练好级联分类器,然后就是检测就行。在opencv中,“opencv/sources/data中就有内置训练好的:基于haar特征的级联分类器、基于hog特征的级联分类器、基于lbp特征的级联分类器”三种。相比较来说 算haar文件夹中的分类器最多,其他两个比如:hog的只有一个行人检测分类器“hogcascade_pedestrians.xml”而已;
lbp的有三个分类器:“lbpcascade_frontalface.xml”、“lbpcascade_profileface.xml”、“lbpcascade_silverware.xml”。·
采用的是级联分类器类:CascadeClassifier,并通过不同的分类器类型进行初始化。
1、先设定不同的分类器:
这里使用自带的haar特征的前人脸和眼睛级联分类器:
string face_cascade_name = "haarcascade_frontalface_alt.xml";
string eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
2、然后进行分类器类的初始化:
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
这里使用load()函数进行加载,当然也可以定义类的对象的时候进行初始化。load()函数的返回值是bool类型。
当不需要该分类器可以使用cvReleasehaarClassifierCascade(&cascade);进行释放。
3、进行对象的检测
void CascadeClassifier::detectMultiScale(const Mat& image, vector<Rect>& objects, double scaleFactor=1.1, int minNeighbors=3, int flags=0,
Size minSize=Size(), Size maxSize=Size())
这是这个函数的原型,是用来在输入图像中检测不同尺寸的对象,检测的对象将会作为一个矩形列表,也就是原型中的第二个参数。
参数列表:需要检测的图像(矩阵的类型为CV_8U)、矩形vector容器用来装填所包含的检测到的对象、在每个图像尺度上需要进行缩放的因子、候选矩形框所需要包含的邻居大小、已经废弃的参数、可能的对象尺寸的最小值、可能的对象的尺寸的最大值;
最后两个参数就是用来控制范围的,使得能够忽略小于最小的和大于最大的;第一个参数的要求是灰度图像,所以不能是彩色,需要进行转换:
vector<Rect> faces;
Mat detFrame_gray; cvtColor( srcFrame, detFrame_gray, CV_BGR2GRAY );
equalizeHist( detFrame_gray, detFrame_gray );
face_cascade.detectMultiScale( detFrame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
上面就是会自动检测人脸然后将检测到的人脸的个数和每个人脸的矩形区域放在faces这个容器类中。上面最后一个最大值未指定大小,只设定了最小的对象矩形大小。
for( int i = 0; i < faces.size(); i++ )
{
Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 ); Mat faceROI = frame_gray( faces[i] );
vector<Rect> eyes; //-- 在每张人脸上检测双眼
eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) ); for( int j = 0; j < eyes.size(); j++ )
{
Point center( faces[i].x + eyes[j].x + eyes[j].width*0.5, faces[i].y + eyes[j].y + eyes[j].height*0.5 );
int radius = cvRound( (eyes[j].width + eyes[i].height)*0.25 );
circle( frame, center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );
}
}
上面通过对每个人脸中,先定位好每个人脸的中心位置,然后在采用画椭圆的方式来讲人脸进行框出来,并且对每个框出来的位置进行选取ROI感兴趣区域来检测眼睛。并将检测到的眼睛用圆框出来。
notes:不论是上面的人脸还是眼睛检测,其中的第一个参数都是被检测的图像,而且在后面的画椭圆和圆的过程中第一个参数仍然是原图像,最后加个imshow()的函数就可以进行显示检测到的结果。
其中的cvRound()函数的原型为 int cvRound(double value);将参数转化成与其最接近的整数。
下面这部分来自于http://blog.csdn.net/vsooda/article/details/7543789
但是也和《opencv2.4.9refman.pdf》的448页一样,相信该作者也是翻译过来的。
目前人脸检测分类器大都是基于haar特征利用Adaboost学习算法训练的。
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指其它任意图片,所有的样本图片都被归一化为同样的尺寸大小(例如,20x20)。
分类器训练完以后,就可以应用于输入图像中的感兴趣区域(与训练样本相同的尺寸)的检测。检测到目标区域(汽车或人脸)分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。 为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。
分类器中的“级联”是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。"boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。基础分类器是至少有两个叶结点的决策树分类器。
Haar特征是基础分类器的输入,主要描述如下。目前的算法主要利用下面的Harr特征。
个人:其实过程就是这样,如果感兴趣,更多的应该是使用自己训练的分类器,在目标检测这部分中,暂时只介绍了级联分类器类,在《opencv2.4.9refman》中还介绍了潜在SVM分类器,不过还没有对应的例子罢了。
opencv5-objdetect之级联分类器的更多相关文章
- 利用opencv中的级联分类器进行人脸检測-opencv学习(1)
OpenCV支持的目标检測的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification).注意,新版本号的C++接口除了Haar特征以外 ...
- opencv:级联分类器训练(cascade classifier training)(两个分类器的区别)
# 介绍 级联分类器包括两个工作阶段:训练(traning),检测(detection).检测阶段在文档<objdetect module of general OpenCV documenta ...
- OpenCV 级联分类器
#include "opencv2/objdetect/objdetect.hpp" #include "opencv2/highgui/highgui.hpp" ...
- 【原/转】opencv的级联分类器训练与分类全程记录
众所周知,opencv下有自带的供人脸识别以及行人检测的分类器,也就是说已经有现成的xml文件供你用.如果我们不做人脸识别或者行人检测,而是想做点其他的目标检测该怎么做呢?答案自然是自己训练一个特定的 ...
- 如何利用OpenCV自带的级联分类器训练程序训练分类器
介绍 使用级联分类器工作包括两个阶段:训练和检测. 检测部分在OpenCVobjdetect 模块的文档中有介绍,在那个文档中给出了一些级联分类器的基本介绍.当前的指南描述了如何训练分类器:准备训练数 ...
- 级联分类器训练-----OpenCV
关键词:级联分类器.opencv_traincascade 下面简述操作过程: 准备正负样本:neg.pos 正负样本路径生成:dir /a/b>path.txt //path:pos or n ...
- OpenCV——级联分类器(CascadeClassifier)
级联分类器的计算特征值的基础类FeatureEvaluator 功能:读操作read.复制clone.获得特征类型getFeatureType,分配图片分配窗口的操作setImage.setWindo ...
- 使用OpenCV训练好的级联分类器识别人脸
一.使用OpenCV训练好的级联分类器来识别图像中的人脸 当然还有很多其他的分类器,例如表情识别,鼻子等,具体可在这里下载: OpenCV分类器 import cv2 # 矩形颜色和描边 color ...
- opencv的级联分类器(mac)
级联分类器的介绍:级联分类器训练 因为要训练负样本,windows电脑有些问题,所以就只能有mac进行训练. 在windows中训练,准备了负样本之后,进行三步. 1.opencv_createsam ...
随机推荐
- CentOS 6.3下MySQL 5.6源码安装
Linux操作系统:CentOS 6.3 1:下载:当前mysql版本到了5.6.10 下载地址:http://dev.mysql.com/downloads/mysql/5.6.html#downl ...
- 密码校验正则表达式(java 环境)
密码校验需求: 1) 密码控制只能输入字母.数字.特殊符号(~!@#$%^&*()_+[]{}|\;:'",./<>?)2) 长度 6-16 位,必须包括字母.数字.特殊 ...
- read
从标准输入读入一行内容并以空格为分隔符赋值给变量,如果输入的内容过多,则把剩下的所有内容都赋值给最后一个变量 $read A B C 123 456 789 101 $echo "$A&qu ...
- 绕过校园网的共享限制 win10搭建VPN服务器实现--从入门到放弃
一.开篇立论= =.. 上次说到博主在电脑上搭建了代理服务器来绕过天翼客户端的共享限制,然而经过实际测试还不够完美,所以本着生命不息,折腾不止的精神,我又开始研究搭建vpn服务器= =... (上次的 ...
- 注意Android里TextView控件的一个小坑,用android:theme来设置样式时动态载入的layout会丢失该样式
注意Android里TextView控件的一个小坑,用android:theme来设置样式时动态载入的layout会丢失该样式 这个坑,必须要注意呀, 比如在用ListView的时候,如果在List_ ...
- Altium Desiner 警告 adding hidden net
这是因为 一些元件 隐藏了 vcc GND 或者没有使用vcc GND ,用不着它也报警告了. 这里可以将 vcc GND删掉这个管脚.
- TFS代码变更和工作项关联,为系统变更提供完美的跟踪轨迹
TFS是微软的应用软件生命周期管理(ALM)的解决方案产品,相比我们常见的一些ALM产品,例如HP ALM, IBM Rational, Atlanssian Jira等,其最大的区别在于TFS将软件 ...
- 地产cio揭秘:帆软大商业智能解决方案如何助力地产行业信息化
一. 地产行业信息化现状 房地产企业核心竞争能力的提升,需要强壮的企业运营管理能力,需要及时.准确.全面的业务数据分析作为参考与支撑.然而很多房地产企业缺乏能够集中体现企业运营活动状况的.全 ...
- Web学习之css
CSS指层叠样式表(Cascading Style Sheets),CSS 是标准的布局语言,用来控制元素的尺寸.颜色.排版.CSS 由 W3C 发明,用来取代基于表格的布局.框架以及其他非标准的表现 ...
- Java 三大特性——封装、继承、多态
一.封装 封装,实际就是把属于同一类事物的共性(包括属性与方法)归到一个类中,以方便使用. 概念:在面向对象程式设计方法中,封装(英语:Encapsulation)是指,一种将抽象性函式接口的实作细节 ...