内容接前文:

https://www.cnblogs.com/devilmaycry812839668/p/14988686.html

这里我们考虑的数据集是自建数据集,那么效果又会如何呢???

import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(10):
a = x*i
b = y*i
print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=True) print('*' * 100) x, y = np.array([[0.2]], dtype=np.float32), np.array([[0.2]], dtype=np.float32)
model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=False) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
# print(b-a)

运行结果:

WARNING: 'ControlDepend' is deprecated from version 1.1 and will be removed in a future version, use 'Depend' instead.
[WARNING] ME(22644:139765219266688,MainProcess):2021-07-09-03:51:42.606.193 [mindspore/ops/operations/array_ops.py:2302] WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.
[[0.]] [[0.]]
[[0.1]] [[0.1]]
[[0.2]] [[0.2]]
[[0.3]] [[0.3]]
[[0.4]] [[0.4]]
[[0.5]] [[0.5]]
[[0.6]] [[0.6]]
[[0.7]] [[0.7]]
[[0.8]] [[0.8]]
[[0.90000004]] [[0.90000004]]
[[0.]] [[0.]]
[[0.1]] [[0.1]]
[[0.]] [[0.]]
[[0.1]] [[0.1]]
[[0.2]] [[0.2]]
[[0.3]] [[0.3]]
[[0.4]] [[0.4]]
[[0.5]] [[0.5]]
[[0.6]] [[0.6]]
[[0.7]] [[0.7]]
[[0.8]] [[0.8]]
[[0.90000004]] [[0.90000004]]
epoch: 1 step: 10, loss is 14095.578
****************************************************************************************************
[[0.]] [[0.]]
[[0.2]] [[0.2]]
[[0.4]] [ERROR] ANALYZER(22644,python):2021-07-09-03:51:44.281.599 [mindspore/ccsrc/pipeline/jit/static_analysis/evaluator.cc:74] Eval] Function construct_wrapper, The number of parameters of this function is 20, but the number of provided arguments is 22. NodeInfo:
Traceback (most recent call last):
File "/tmp/pycharm_project_753/second_nnnew_line_regression.py", line 85, in <module>
[[0.4]] main()
File "/tmp/pycharm_project_753/second_nnnew_line_regression.py", line 63, in main [[0.6]] [[0.6]]model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=False) File "/usr/local/python-3.7.5/lib/python3.7/site-packages/mindspore/train/model.py", line 592, in train
[[0.8]] [[0.8]]
[[1.]] sink_size=sink_size)[[1.]] File "/usr/local/python-3.7.5/lib/python3.7/site-packages/mindspore/train/model.py", line 385, in _train
[[1.2]] [[1.2]]
[[1.4]] [[1.4]]self._train_process(epoch, train_dataset, list_callback, cb_params) File "/usr/local/python-3.7.5/lib/python3.7/site-packages/mindspore/train/model.py", line 513, in _train_process
[[1.6]] [[1.6]]
[[1.8000001]] [[1.8000001]]outputs = self._train_network(*next_element) File "/usr/local/python-3.7.5/lib/python3.7/site-packages/mindspore/nn/cell.py", line 322, in __call__
out = self.compile_and_run(*inputs)
File "/usr/local/python-3.7.5/lib/python3.7/site-packages/mindspore/nn/cell.py", line 578, in compile_and_run
self.compile(*inputs)
File "/usr/local/python-3.7.5/lib/python3.7/site-packages/mindspore/nn/cell.py", line 565, in compile
_executor.compile(self, *inputs, phase=self.phase, auto_parallel_mode=self._auto_parallel_mode)
File "/usr/local/python-3.7.5/lib/python3.7/site-packages/mindspore/common/api.py", line 505, in compile
result = self._executor.compile(obj, args_list, phase, use_vm)
TypeError: mindspore/ccsrc/pipeline/jit/static_analysis/evaluator.cc:74 Eval] Function construct_wrapper, The number of parameters of this function is 20, but the number of provided arguments is 22. NodeInfo: # 进程已结束,退出代码为 1

经过多次实验,发现:

设置为:

    model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=True)

    print('*' * 100)

    x, y = np.array([[0.2]], dtype=np.float32), np.array([[0.2]], dtype=np.float32)
model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=False)

则会报错。

而:

    model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=True)

    print('*' * 100)

    x, y = np.array([[0.2]], dtype=np.float32), np.array([[0.2]], dtype=np.float32)
model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=True)
    model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=False)

    print('*' * 100)

    x, y = np.array([[0.2]], dtype=np.float32), np.array([[0.2]], dtype=np.float32)
model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=False)
    model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=False)

    print('*' * 100)

    x, y = np.array([[0.2]], dtype=np.float32), np.array([[0.2]], dtype=np.float32)
model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=True)

则都不会报错。

可以看到如果两次调用同一个mode来训练持续数据,那么dataset_sink_mode 的设置还是很重要的,

这里面推荐的dataset_sink_mode的设置是如果同一个model多次训练,那么所有的训练时dataset_sink_mode都设置为False ,

这样经验上来说能够更大可能性保证正常运行。

====================================================================

那么我们对多次的 model.train 进行训练和一次的model.train 进行训练,那么在运算效率上会有多大区别呢???

1.

一次model.tain 进行20000epochs的训练, 代码如下:

import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(100):
a = x*i
b = y*i
#print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) model.train(20000, dataset, callbacks=LossMonitor(100), dataset_sink_mode=False) """
print('*' * 100) x, y = np.array([[0.2]], dtype=np.float32), np.array([[0.2]], dtype=np.float32)
model.train(1, dataset, callbacks=LossMonitor(1), dataset_sink_mode=False)
""" # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)

训练时间:

1464.53s

1460.07s

1452.64s

2.

2次model.tain 分别进行10000epochs的训练, 代码如下:

import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(100):
a = x*i
b = y*i
#print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) model.train(10000, dataset, callbacks=LossMonitor(100), dataset_sink_mode=False) print('*' * 100) x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32)
model.train(10000, dataset, callbacks=LossMonitor(100), dataset_sink_mode=False) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)

训练时间:

1460.29s

1454.51s

1457.07s

3.

10次model.tain 分别进行2000epochs的训练, 代码如下:

import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(100):
a = x*i
b = y*i
#print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) for i in range(10):
print(i, '\t', '*' * 100)
model.train(2000, dataset, callbacks=LossMonitor(100), dataset_sink_mode=False) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)

训练时间:

1457.52s

4.

100次model.tain 分别进行200epochs的训练, 代码如下:

import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(100):
a = x*i
b = y*i
#print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) for i in range(100):
print(i, '\t', '*' * 100)
model.train(200, dataset, callbacks=LossMonitor(100), dataset_sink_mode=False) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)

训练时间:

1457.56s

5.

1000次model.tain 分别进行20epochs的训练, 代码如下:

6.

10000次model.tain 分别进行2epochs的训练, 代码如下:

import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(100):
a = x*i
b = y*i
#print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) for i in range(10000):
print(i, '\t', '*' * 100)
model.train(2, dataset, callbacks=[LossMonitor(100)], dataset_sink_mode=False) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)

训练时间:

1464.64s

7.

20000次model.tain 分别进行1epochs的训练, 代码如下:

import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(100):
a = x*i
b = y*i
#print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) for i in range(20000):
#print(i, '\t', '*' * 100)
model.train(1, dataset, callbacks=[LossMonitor(100)], dataset_sink_mode=False) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)

训练时间:

1475.06s

1469.48s

1475.70s

1471.46s

=========================================================

从测试的数据上来看使用多次的model.train确实要比一次调用model.train要耗费时间,不过考虑到这样能够更多的支持其他功能,这种性能损耗也是完全可以接受的。

本文实验环境为  MindSpore1.1  docker版本

宿主机:Ubuntu18.04系统

CPU:I7-8700

GPU:1060ti NVIDIA显卡

(续)在深度计算框架MindSpore中如何对不持续的计算进行处理——对数据集进行一定epoch数量的训练后,进行其他工作处理,再返回来接着进行一定epoch数量的训练——单步计算的更多相关文章

  1. 带你学习MindSpore中算子使用方法

    摘要:本文分享下MindSpore中算子的使用和遇到问题时的解决方法. 本文分享自华为云社区<[MindSpore易点通]算子使用问题与解决方法>,作者:chengxiaoli. 简介 算 ...

  2. TensorFlow - 框架实现中的三种 Graph

    文章目录 TensorFlow - 框架实现中的三种 Graph 1. Graph 2. GraphDef 3. MetaGraph 4. Checkpoint 5. 总结 TensorFlow - ...

  3. SSH框架应用中常用Jar包用途介绍

    struts2需要的几个jar包:1)xwork-core-2.1.62)struts2-core-2.1.83)ognl-2.7.34)freemarker-2.3.155)commons-io-1 ...

  4. python运维开发(十七)----jQuery续(示例)web框架django

    内容目录: jQuery示例 前端插件 web框架 Django框架 jQuery示例 dom事件绑定,dom绑定在form表单提交按钮地方都会绑定一个onclick事件,所有查看网站的人都能看到代码 ...

  5. 如何在Crystal框架项目中内置启动MetaQ服务?

    当Crystal框架项目中需要使用消息机制,而项目规模不大.性能要求不高时,可内置启动MetaQ服务器. 分步指南 项目引入crystal-extend-metaq模块,如下: <depende ...

  6. 如何在Crystal框架项目中内置启动Zookeeper服务?

    当Crystal框架项目需要使用到Zookeeper服务时(如使用Dubbo RPC时,需要注册服务到Zookeeper),而独立部署和启动Zookeeper服务不仅繁琐,也容易出现错误. 在小型项目 ...

  7. 浅入深出之Java集合框架(中)

    Java中的集合框架(中) 由于Java中的集合框架的内容比较多,在这里分为三个部分介绍Java的集合框架,内容是从浅到深,如果已经有java基础的小伙伴可以直接跳到<浅入深出之Java集合框架 ...

  8. Javscript调用iframe框架页面中函数的方法

    Javscript调用iframe框架页面中函数的方法,可以实现iframe之间传值或修改值了, 访问iframe里面的函数: window.frames['CallCenter_iframe'].h ...

  9. 游戏框架设计中的。绑定binding。。。命令 command 和消息message 以及MVVM

    游戏框架设计中的.绑定binding...命令 command 和消息message

  10. 关于MFC框架程序中CWinApp::OnIdle

    很早之前就发现,我写的图形引擎在MFC框架程序中的刷帧率始终在60FPS左右.好在自己的程序对刷帧率的要求不是很高,所以一直没有太过纠结此事.直到今天看了别人的程序才发现应该在函数CWinApp::O ...

随机推荐

  1. Spring源码——AOP实现原理

    引言 Spring AOP(Aspect Orient Programming),AOP翻译过来就是面向切面编程,它体现的是一种编程思想,是对面向对象编程(OOP)的一种补充. 在实际业务开发过程中, ...

  2. el-upload拍照上传多个文件报错 ERR_UPLOAD_FILE_CHANGED问题

    最近同事使用el-upload上传图片时出现一个问题,连续拍照多个图片的时候,循环调用接口上传会报错: ERR_UPLOAD_FILE_CHANGED,网上找了很多方案没有解决,下面是我自己的解决过程 ...

  3. Thread交互及interrupt示例

    package com.test.docxml; /** Thread交互及interrupt示例 * 线程模拟:一个在睡觉,一个在敲墙,敲墙完成之后,把睡觉的吵醒了. */ public class ...

  4. http请求方式-RestTemplate

    http请求方式-RestTemplate import com.alibaba.fastjson.JSON; import com.example.core.mydemo.http.OrderReq ...

  5. 【iOS】bugly进阶系列

    初学者使用bugly仅仅是用于接受崩溃日志,但是其实bugly除了接受崩溃之外还可以做许多事情.这里我把bugly分成三大模块逐一进行探讨. (其实bugly顶部的三个标题就预示着bugly的功能本来 ...

  6. Springcloud开发之OpenFeign调用和认证

    SpringCloud开发cloud具有巨大的灵活性. 在调用其它服务的时候有多种方式,虽然本质一样,但是细节还是有所差异. 一.概述 当a服务调用b服务的时候有多种方式进行: 1.通过openFei ...

  7. anaconda里虚拟环境安装jupyter notebook

    安装jupyter notebook 打开anaconda prompt,进入虚拟环境 conda activate Pytorch_learning 下载安装jupyter notebook con ...

  8. Oracle 三种分页方法

    Oracle的三层分页指的是在进行分页查询时,使用三种不同的方式来实现分页效果,分别是使用ROWNUM.使用OFFSET和FETCH.使用ROW_NUMBER() OVER() 1.使用ROWNUM ...

  9. 跟我一起学习和开发动态表单系统-后端用spring boot、mybatis实现方法(4)

    ## 动态表单系统:利用 Spring Boot 和 MyBatis 实现后端服务 在现代企业应用中,表单是数据收集和处理的核心部分.然而,传统的表单系统难以适应快速变化的需求.为了解决这个问题,我们 ...

  10. SpringBoot 校验post请求参数

    导读 前后端分离项目中,前端往后端传值时,后端都要做参数格式校验,比如校验数字最大值.最小值.是否允许为空.日期格式等等. 添加依赖 <!-- 参数校验 --> <dependenc ...