本题是考察动态规划与java的快速输入:

  1. max[i]表示第i个结尾的最大的连续子串和。b
  2. begin[i]表示第[begin[i],i]为最大和的开始位置

超时代码:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader; public class Main {
@SuppressWarnings("unchecked")
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int k = Integer.valueOf(br.readLine());
String[] words = br.readLine().split(" ");
int[] num = new int[k];
int negativecount = 0;
for (int i = 0; i < k; i++) {
num[i] = Integer.valueOf(words[i]);
if( num[i] <0){
negativecount++;
}
}
if( negativecount == k){
System.out.println(0 + " "+num[0] +" "+num[k-1]);
br.close();
return;
}
int[] begin = new int[k];
int[] max = new int[k];
begin[0] = 0;
max[0] = num[0];
int dpmax = 0;
for (int i = 1; i < k; i++) {
if (max[i - 1] >=0) {
max[i] = max[i - 1] + num[i];
begin[i] = begin[i - 1];
} else {
max[i] = num[i];
begin[i] = i;
}
if(max[i] > max[dpmax]){
dpmax = i;
}
} System.out.println(max[dpmax]+" "+num[begin[dpmax]]+" "+num[dpmax]); br.close();
}
}

未超时:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.StreamTokenizer; public class Main {
@SuppressWarnings("unchecked")
public static void main(String[] args) throws IOException {
StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
in.nextToken();
int k = (int)in.nval;
int[] num = new int[k];
int negativecount = 0;
for (int i = 0; i < k; i++) {
in.nextToken();
num[i] = (int)in.nval;
if( num[i] <0){
negativecount++;
}
}
if( negativecount == k){
System.out.println(0 + " "+num[0] +" "+num[k-1]);
return;
}
int[] begin = new int[k];
int[] max = new int[k];
begin[0] = 0;
max[0] = num[0];
int dpmax = 0;
for (int i = 1; i < k; i++) {
if (max[i - 1] >=0) {
max[i] = max[i - 1] + num[i];
begin[i] = begin[i - 1];
} else {
max[i] = num[i];
begin[i] = i;
}
if(max[i] > max[dpmax]){
dpmax = i;
}
} System.out.println(max[dpmax]+" "+num[begin[dpmax]]+" "+num[dpmax]);
}
}

  

动态规划原理

能用动态规划解决的问题,需要满足三个条件:最优子结构,无后效性和子问题重叠。

最优子结构

具有最优子结构也可能是适合用贪心的方法求解。

注意要确保我们考察了最优解中用到的所有子问题。

  1. 证明问题最优解的第一个组成部分是做出一个选择;
  2. 对于一个给定问题,在其可能的第一步选择中,假定你已经知道哪种选择才会得到最优解。你现在并不关心这种选择具体是如何得到的,只是假定已经知道了这种选择;
  3. 给定可获得的最优解的选择后,确定这次选择会产生哪些子问题,以及如何最好地刻画子问题空间;
  4. 证明作为构成原问题最优解的组成部分,每个子问题的解就是它本身的最优解。方法是反证法,考虑加入某个子问题的解不是其自身的最优解,那么就可以从原问题的解中用该子问题的最优解替换掉当前的非最优解,从而得到原问题的一个更优的解,从而与原问题最优解的假设矛盾。

要保持子问题空间尽量简单,只在必要时扩展。

最优子结构的不同体现在两个方面:

  1. 原问题的最优解中涉及多少个子问题;
  2. 确定最优解使用哪些子问题时,需要考察多少种选择。

子问题图中每个定点对应一个子问题,而需要考察的选择对应关联至子问题顶点的边。

无后效性

已经求解的子问题,不会再受到后续决策的影响。

子问题重叠

如果有大量的重叠子问题,我们可以用空间将这些子问题的解存储下来,避免重复求解相同的子问题,从而提升效率。

基本思路

对于一个能用动态规划解决的问题,一般采用如下思路解决:

  1. 将原问题划分为若干 阶段,每个阶段对应若干个子问题,提取这些子问题的特征(称之为 状态);
  2. 寻找每一个状态的可能 决策,或者说是各状态间的相互转移方式(用数学的语言描述就是 状态转移方程)。
  3. 按顺序求解每一个阶段的问题。

如果用图论的思想理解,我们建立一个 有向无环图,每个状态对应图上一个节点,决策对应节点间的连边。这样问题就转变为了一个在 DAG 上寻找最长(短)路的问题(参见:DAG 上的 DP

PAT 甲级【1007 Maximum Subsequence Sum】的更多相关文章

  1. PAT 甲级 1007 Maximum Subsequence Sum (25)(25 分)(0不是负数,水题)

    1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...

  2. PAT 甲级 1007 Maximum Subsequence Sum

    https://pintia.cn/problem-sets/994805342720868352/problems/994805514284679168 Given a sequence of K  ...

  3. PAT 甲级 1007. Maximum Subsequence Sum (25) 【最大子串和】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1007 思路 最大子列和 就是 一直往后加 如果 sum < 0 就重置为 0 然后每次 ...

  4. PAT甲 1007. Maximum Subsequence Sum (25) 2016-09-09 22:56 41人阅读 评论(0) 收藏

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  5. PAT Advanced 1007 Maximum Subsequence Sum

    题目 1007 Maximum Subsequence Sum (25分) Given a sequence of K integers { N1, N2, ..., N**K }. A contin ...

  6. PAT Advanced 1007 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  7. PAT甲级——A1007 Maximum Subsequence Sum

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  8. python编写PAT 1007 Maximum Subsequence Sum(暴力 分治法 动态规划)

    python编写PAT甲级 1007 Maximum Subsequence Sum wenzongxiao1996 2019.4.3 题目 Given a sequence of K integer ...

  9. PAT 1007 Maximum Subsequence Sum(最长子段和)

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  10. 1007 Maximum Subsequence Sum (PAT(Advance))

    1007 Maximum Subsequence Sum (25 分)   Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A ...

随机推荐

  1. 小知识:如何配置OSW添加私网监控

    最近遇到一个Case,Oracle Support要求添加私网(心跳网络)监控. OSW默认是没有私网监控的,如需增加只需配置private.net文件,对应采集信息会存放到archive/oswpr ...

  2. 关于Delphi TabOrder 更快捷的设置 方法

    今天才发现 delphi IDE 有设置 TabOrder 的 更加 快捷的方法,以前 总觉的 设计 起来 好麻烦.现在 终于 解放了.... ---------------------------- ...

  3. Hive-mapjoin详解(mapjoin原理)

    笼统的说,Hive中的Join可分为Common Join(Reduce阶段完成join)和Map Join(Map阶段完成join).本文简单介绍一下两种join的原理和机制. 一 .Common ...

  4. Linux-expect(以交互形式输入命令,实现交互通信)

    1.expect简介 expect是一种脚本语言,它能够代替人工实现与终端的交互,主要应用于执行命令和程序时,系统以交互形式要求输入指定字符串,实现交互通信. 安装命令: yum install ex ...

  5. Markdown:简洁高效的文本标记语言

    引言 在当今信息爆炸的时代,我们需要一种简洁.高效的文本标记语言来排版和发布内容.Markdown应运而生,它是一种轻量级的文本标记语言,以其简单易学.易读易写的特点,成为了广大写作者的首选工具.本文 ...

  6. Java基础综合测试

    Java版基础练习题: 输入练习: [问题描述] 任务很简单: 给定若干个整数,请编程输出它们的和. [输入形式] 输入包含多组测试用例. 每组测试数据首先是一个正整数N,表示本组数据有N个整数. 请 ...

  7. 复习一下JVM内存结构

    一.程序计数器 程序计数器内存很小,可以看作是当前线程所执行字节码的行号指示器. 有了它,程序就能被正确的执行. 因为有线程切换的存在,则每个线程必须有各自独立的程序计数器,即线程私有的内存. 这里再 ...

  8. Spring Security实现JDBC用户登录认证

    在搭建博客后端服务框架时,我采用邮件注册+Spring Security登录认证方式,结合mysql数据库,给大家展示下具体是怎么整合的. 本篇是基于上一篇:spring boot实现邮箱验证码注册 ...

  9. 【Android逆向】frida 破解 滚动的天空

    1. apk 安装到手机中 2. 玩十次之后,会提示 充值 3. adb shell dumpsys window | grep mCurrentFocus 查看一些当前activity是哪一个 是 ...

  10. MPG线程模型简介

    概述 go语言中的MPG线程模型对两级线程模型进行了一定程度的改进,使它能够更加灵活的进行线程之间的调度. 它由3个主要模块构成,如下图: MPG的3个主要模块以及功能,我们通过下表所示. 模块 功能 ...