LLM实战:当网页爬虫集成gpt3.5
1. 背景
最近本qiang~关注了一个开源项目Scrapegraph-ai,是关于网页爬虫结合LLM的项目,所以想一探究竟,毕竟当下及未来,LLM终将替代以往的方方面面。
这篇文章主要介绍下该项目,并基于此项目实现一个demo页面,页面功能是输入一个待爬取的网页地址以及想要从网页中抽取的内容,最后点击按钮实现网页抓取及解析。
2. 模块简介
2.1 Scrapegraph-ai

该项目是一个网页爬虫的python包,使用LLM和直接图逻辑(direct graph logic)来为网页和本地文档(XML, HTML, JSON)创建爬取管道(pipeline)。
2.2 GPT-3.5免费申请,且国内可访问
GPT3.5-Turbo免费申请可以在开源项目GPT_API_free进行访问,其中该项目有免费申请的地址,以及网页插件、桌面应用安装等教程,在日志工作学习中,使用起来非常丝滑~
其次,国内访问gpt3.5可以基于该项目提供的代理: https://api.chatanywhere.tech/v1来实现访问。
3. 实战
3.1 安装第三方包
# 网页开发包,和Gradio类似
pip install streamlit
# 爬虫相关包
pip install playwright
playwright install
playwright install-deps # 安装依赖
3.2 设置gpt3.5代理环境变量
import os
os.environ['OPENAI_API_BASE'] = 'https://api.chatanywhere.tech/v1'
OPEN_API_KEY = 'sk-xxxxx'
3.3 创建网页元素
import streamlit as st
st.title('网页爬虫AI agent')
st.caption('该app基于gpt3.5抓取网页信息')
url = st.text_input('属于你想抓取的网页地址URL')
user_prompt = st.text_input('输入你想要从该网页获取知识的prompt')
3.4 基于scrapegraph-ai包构建图配置以及创建图逻辑
from scrapegraphai.graphs import SmartScraperGraph # 图配置信息,默认调用gpt3.5,其次embedding模型未设置,但阅读源码后,可以发现默认走的是openai的embedding模型
graph_config = {
'llm': {
'api_key': OPEN_API_KEY,
'model': 'gpt-3.5-turbo',
'temperature': 0.1
}
} # 创建直接图逻辑
smart_scraper_graph = SmartScraperGraph(
prompt=user_prompt, # 用户输入的prompt
source=url, # 用户输入的url
config=graph_config
) # 增加一个按钮进行爬取、解析及页面渲染
if st.button('爬取'):
result = smart_scraper_graph.run()
st.write(result)
3.5 运行启动
streamlit run scrape_web_openai.py
3.6 底层原理
通过研读SmartScraperGraph源码,底层直接图逻辑的原理如下图所示。分为抓取、解析、RAG、答案生成,并默认以json格式输出

4. 效果
4.1 新闻类
网址:ps://news.sina.com.cn/w/2024-05-20/doc-inavwrxq4965190.shtml

4.2 公众号
https://mp.weixin.qq.com/s/rFYXKiedqmVo5URDxlbHzA

针对一些简单的网页如新闻网页等,可以正常爬取,但响应时间在10s以上,针对一些复杂的页面,如包含鉴权、反爬机制等,可能无法正常爬取。
5. 总结
一句话足矣~
本文主要是通过Scrapegraph-ai集成gpt3.5实现一个简单的网页爬取并解析的demo应用,其中涉及到gpt3.5免费申请,Scrapegraph-ai底层原理简介,demo应用源码等。
之后会写一篇关于Qwen7B和BGE的相似度模型,与Scrapegraph-ai集成的demo应用,敬请期待 ~
6. 参考
1. Scrapegraph-ai: https://github.com/VinciGit00/Scrapegraph-ai
2. GPT_API_free: https://github.com/chatanywhere/GPT_API_free

LLM实战:当网页爬虫集成gpt3.5的更多相关文章
- Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)
原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...
- [resource-]Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
reference: http://www.52nlp.cn/python-%e7%bd%91%e9%a1%b5%e7%88%ac%e8%99%ab-%e6%96%87%e6%9c%ac%e5%a4% ...
- 实战项目:EMOS集成邮件平台
实战项目:EMOS集成邮件平台用户邮箱系统:http://mailAnonymous.cn/邮件服务器管理平台http://mailAnonymous.cn/extman 项目需求:随着公司规模不断扩 ...
- Python带你轻松进行网页爬虫
前不久DotNet开源大本营通过为.NET程序员演示如何在.NET下使用C#+HtmlAgilityPack+XPath进行网页数据的抓取,从而为我们展示了HtmlAgilitypack利器的优点和使 ...
- 【Python】Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
本文转载自:https://www.cnblogs.com/colipso/p/4284510.html 好文 mark http://www.52nlp.cn/python-%E7%BD%91%E9 ...
- 零基础入门Python实战:四周实现爬虫网站 Django项目视频教程
点击了解更多Python课程>>> 零基础入门Python实战:四周实现爬虫网站 Django项目视频教程 适用人群: 即将毕业的大学生,工资低工作重的白领,渴望崭露头角的职场新人, ...
- 《实战Python网络爬虫》- 感想
端午节假期过了,之前一直在做出行准备,后面旅游完又休息了一下,最近才恢复状态. 端午假期最后一天收到一个快递,回去打开,发现是微信抽奖中的一本书,黄永祥的<实战Python网络爬虫>. 去 ...
- Jmeter(四十五) - 从入门到精通高级篇 - Jmeter之网页爬虫-上篇(详解教程)
1.简介 上大学的时候,第一次听同学说网页爬虫,当时比较幼稚和懵懂,觉得就是几只电子虫子爬在网页上在抓取东西.后来又听说写代码可以实现网页爬虫,宏哥感觉高大上,后来工作又听说,有的公司做爬虫被抓的新闻 ...
- cURL 学习笔记与总结(2)网页爬虫、天气预报
例1.一个简单的 curl 获取百度 html 的爬虫程序(crawler): spider.php <?php /* 获取百度html的简单网页爬虫 */ $curl = curl_init( ...
- c#网页爬虫初探
一个简单的网页爬虫例子! html代码: <head runat="server"> <title>c#爬网</title> </head ...
随机推荐
- caidao qsnctfwp
进入网页发现如下内容 直接使用蚁剑连接 连接并进入后,在根目录下发现名为 flag 的文件,即可获取 flag -End-
- python性能测试,请求QPS测试
QPS = (1000ms/平均响应时间ms)*服务并行数量 #!/user/bin/env python #coding=utf-8 import requests import datetime ...
- [Violation] 'click' handler took 429ms
问题 violation 意思为侵权,违背,违反,也就是说明click函数执行违反了某些规则 原因测试 当click事件中执行的程序耗时过长,超过160ms左右的时候就会显示该信息,测试最低155ms ...
- 力扣77(Java)-组合(中等)
题目: 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合. 你可以按 任何顺序 返回答案. 示例 1: 输入:n = 4, k = 2输出:[ [2,4], [3,4], ...
- 力扣13(java)-罗马数字转整数(简单)
题目: 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值I 1V 5X 10L 50C 100D 500M 1000例如, 罗马数字 2 写做 II ,即为两个并列的 1 ...
- EasyNLP玩转文本摘要(新闻标题)生成
简介: 本⽂将提供关于PEGASUS的技术解读,以及如何在EasyNLP框架中使⽤与PEGASUS相关的文本摘要(新闻标题)生成模型. 作者:王明.黄俊 导读 文本生成是自然语言处理领域的一个重要研究 ...
- 比心云平台基于阿里云容器服务 ACK 的弹性架构实践
简介:本文主要探讨比心云平台如何利用阿里云容器服务 ACK,来构建应用弹性架构,进一步优化计算成本. 作者:韩韬|比心技术 前言 应用容器化改造后,不可避免地会面临这样一个问题:Kubernetes ...
- [FAQ] Win10 WSL Ubuntu 根目录实际位置
1. 运行(win+R),直接输入 \\wsl$ 进入Ubuntu的目录. 2. 或者文件夹里同样输入 \\wsl$ 进行查找. Refer:Win10 WSL 路径 Link:https://ww ...
- 读书笔记 为什么要有R5G6B5颜色格式
在 Windows 下,颜色的格式有很多,我好奇为什么要设计出 R5G6B5 这样的格式?通过阅读一些书和官方的文档,似乎了解了为什么,我在本文记录一下 颜色的格式上,常用的就是 16 位和 32 位 ...
- 2019-8-31-dotnet-core-使用-PowerShell-脚本
title author date CreateTime categories dotnet core 使用 PowerShell 脚本 lindexi 2019-08-31 16:55:58 +08 ...