[bigdata] Spark RDD整理
1. RDD是什么
RDD:Spark的核心概念是RDD (resilient distributed dataset),指的是一个只读的,可分区的弹性分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间可重复使用。
2. 为什么会产生RDD?
(1)传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式中要进行大量的磁盘IO操作。RDD正是解决这一缺点的抽象方法。
(2)RDD是一种有容错机制的特殊集合,可以分布在集群的节点上,以函数式编程操作集合的方式,进行各种并行操作。可以将RDD理解为一个具有容错机制的特殊集合,它提供了一种只读、只能由已存在的RDD变换而来的共享内存,然后将所有数据都加载到内存中,方便进行多次重用。
a.它是分布式的,可以分布在多台机器上,并行计算。
b.它是弹性的,计算过程中内存不够时它会和磁盘进行数据交换。
c. 这些限制可以极大的降低自动容错开销
d.实质是一种更为通用的迭代并行计算框架,用户可以显式的控制计算的中间结果,然后将其自由运用于之后的计算。
(3)RDD的容错机制实现分布式数据集容错的方法有两种:数据检查点 和 记录RDD更新变换序列(血统)。
采用记录更新的方式记录所有更新点的成本很高。所以,RDD只支持粗粒度变换,即只记录单个块上执行的单个操作,然后创建某个RDD的变换序列(血统)存储下来;变换序列指,每个RDD都包含了它是如何由其他RDD变换过来的,以及如何重建某一块数据的信息。因此RDD的容错机制又称“血统”容错。 要实现这种“血统”容错机制,最大的难题就是如何表达父RDD和子RDD之间的依赖关系。
实际上依赖关系可以分两种,窄依赖和宽依赖:窄依赖:子RDD中的每个数据块只依赖于父RDD中对应的有限个固定的数据块;宽依赖:子RDD中的一个数据块依赖于父RDD中的所有数据块。例如:map变换,子RDD中的数据块只依赖于父RDD中对应的一个数据块;groupByKey变换,子RDD中的数据块会依赖于所有父RDD中的数据块,因为一个key可能存在于父RDD的任何一个数据块中。 将依赖关系分类的两个特性:第一,窄依赖可以在某个计算节点上直接通过计算父RDD的某块数据块得到子RDD对应的某块数据;宽依赖则要等到父RDD所有数据块都计算完成之后,并且父RDD的计算结果进行hash,并传到对应节点上之后才能计算子RDD。第二,数据丢失时,对于窄依赖只需要重新计算丢失的那一块数据来恢复;对于宽依赖则要将祖先RDD中的所有数据块全部重新计算来恢复。所以在长“血统”链特别是有宽依赖的时候,需要在适当的时机设置数据检查点。也是这两个特性要求对于不同依赖关系要采取不同的任务调度机制和容错恢复机制。
(4)RDD内部的设计。每个RDD都需要包含以下四个部分:
a. 源数据分割后的数据块,源代码中的splits变量
b.关于“血统”的信息,源码中的dependencies变量
c.一个计算函数(该RDD如何通过父RDD计算得到),源码中的iterator(split)和compute函数
d.一些关于如何分块和数据存放位置的元信息,如源码中的partitioner和preferredLocations
例如:a.一个从分布式文件系统中的文件得到的RDD具有的数据块通过切分各个文件得到的,它是没有父RDD的,它的计算函数只是读取文件的每一行并作为一个元素返回给RDD;b.对于一个通过map函数得到的RDD,它会具有和父RDD相同的数据块,它的计算函数是对每个父RDD中的元素所执行的一个函数
2、RDD在Spark中的地位及作用
(1)为什么会有Spark?因为传统的并行计算模型无法有效的解决 迭代计算(iterative)和 交互式计算(interactive);而Spark的使命便是解决这两个问题,这也是他存在的价值和理由。
(2)Spark如何解决迭代计算?其主要实现思想就是RDD,把所有计算的数据保存在分布式的内存中。迭代计算通常情况下都是对同一个数据集做反复的迭代计算,数据在内存中将大大提升IO操作。这也是Spark涉及的核心:内存计算。
(3)Spark如何实现交互式计算?因为Spark是用scala语言实现的,Spark和scala能够紧密的集成,所以Spark可以完美的运用scala的解释器,使得其中的scala可以像操作本地集合对象一样轻松操作分布式数据集。
(4)Spark和RDD的关系?可以理解为:RDD是一种具有容错性的基于内存的集群计算抽象方法,Spark则是这个抽象方法的实现。
3、如何操作RDD?
(1)如何获取RDD
a. 从共享的文件系统获取,(如:HDFS)
b.通过已存在的RDD转换
c.将已存在scala集合(只要是Seq对象)并行化 ,通过调用SparkContext的parallelize方法实现
d.改变现有RDD的持久性;RDD是懒散,短暂的。(RDD的固化:cache缓存至内存;save保存到分布式文件系统)
(2)操作RDD的两个动作
a. Actions:对数据集计算后返回一个数值value给驱动程序;例如:Reduce将数据集的所有元素用某个函数聚合后,将最终结果返回给程序。
b.Transformation:根据数据集创建一个新的数据集,计算后返回一个新RDD;例如:Map将数据的每个元素经过某个函数计算后,返回一个新的分布式数据集。
(3)Actions具体内容:
| reduce(func) | 通过函数func聚集数据集中的所有元素。Func函数接受2个参数,返回一个值。这个函数必须是关联性的,确保可以被正确的并发执行 |
| collect() | 在Driver的程序中,以数组的形式,返回数据集的所有元素。这通常会在使用filter或者其它操作后,返回一个足够小的数据子集再使用,直接将整个RDD集Collect返回,很可能会让Driver程序OOM |
| count() | 返回数据集的元素个数 |
| take(n) | 返回一个数组,由数据集的前n个元素组成。注意,这个操作目前并非在多个节点上,并行执行,而是Driver程序所在机器,单机计算所有的元素(Gateway的内存压力会增大,需要谨慎使用) |
| first() | 返回数据集的第一个元素(类似于take(1) |
| saveAsTextFile(path) | 将数据集的元素,以textfile的形式,保存到本地文件系统,hdfs或者任何其它hadoop支持的文件系统。Spark将会调用每个元素的toString方法,并将它转换为文件中的一行文本 |
| saveAsSequenceFile(path) | 将数据集的元素,以sequencefile的格式,保存到指定的目录下,本地系统,hdfs或者任何其它hadoop支持的文件系统。RDD的元素必须由key-value对组成,并都实现了Hadoop的Writable接口,或隐式可以转换为Writable(Spark包括了基本类型的转换,例如Int,Double,String等等) |
| foreach(func) | 在数据集的每一个元素上,运行函数func。这通常用于更新一个累加器变量,或者和外部存储系统做交互 |
(4)Transformation具体内容
|
map(func)
|
返回一个新的分布式数据集,由每个原元素经过func函数转换后组成
|
|
filter(func)
|
返回一个新的数据集,由经过func函数后返回值为true的原元素组成
|
|
flatMap(func)
|
类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)
|
|
sample(withReplacement, frac, seed)
|
根据给定的随机种子seed,随机抽样出数量为frac的数据
|
|
union(otherDataset)
|
返回一个新的数据集,由原数据集和参数联合而成
|
|
groupByKey([numTasks])
|
在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq[V])对的数据集。注意:默认情况下,使用8个并行任务进行分组,你可以传入numTask可选参数,根据数据量设置不同数目的Task
|
|
reduceByKey(func, [numTasks])
|
在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。
|
|
join(otherDataset, [numTasks])
|
在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集
|
|
groupWith(otherDataset, [numTasks])
|
在类型为(K,V)和(K,W)类型的数据集上调用,返回一个数据集,组成元素为(K, Seq[V], Seq[W]) Tuples。这个操作在其它框架,称为CoGroup
|
|
cartesian(otherDataset)
|
笛卡尔积。但在数据集T和U上调用时,返回一个(T,U)对的数据集,所有元素交互进行笛卡尔积。
|
[bigdata] Spark RDD整理的更多相关文章
- Spark RDD整理
参考资料: Spark和RDD模型研究:http://itindex.net/detail/51871-spark-rdd-模型 理解Spark的核心RDD:http://www.infoq.com/ ...
- Spark RDD aggregateByKey
aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark. ...
- Spark RDD持久化、广播变量和累加器
Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内 ...
- Spark Rdd coalesce()方法和repartition()方法
在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量 ...
- Spark RDD API详解(一) Map和Reduce
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同 ...
- Spark RDD解密
1. 基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数 ...
- Spark - RDD(弹性分布式数据集)
org.apache.spark.rddRDDabstract class RDD[T] extends Serializable with Logging A Resilient Distribut ...
- Spark RDD Operations(1)
以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 ************************************** ...
- Spark RDD的依赖解读
在Spark中, RDD是有依赖关系的,这种依赖关系有两种类型 窄依赖(Narrow Dependency) 宽依赖(Wide Dependency) 以下图说明RDD的窄依赖和宽依赖 窄依赖 窄依赖 ...
随机推荐
- MyBatis Generator作为maven插件自动生成增删改查代码及配置文件例子
什么是MyBatis Generator MyBatis Generator (MBG) 是一个Mybatis的代码生成器,可以自动生成一些简单的CRUD(插入,查询,更新,删除)操作代码,model ...
- MySQL学习笔记之数据类型
数据类型在所有的数据库使用当中,都是避免不了的部分.以前每次写SQL语句,对于定义成哪种数据类型总是迷迷糊糊,今天就来彻底弄清.以下介绍仅针对MySQL 5.5以上版本. 一.字符串类型 1.char ...
- iOS多线程到底不安全在哪里?
iOS多线程安全的概念在很多地方都会遇到,为什么不安全,不安全又该怎么去定义,其实是个值得深究的话题. 共享状态,多线程共同访问某个对象的property,在iOS编程里是很普遍的使用场景,我们就从P ...
- sublime3 集成angularJs插件
sublime是web开发中一款轻量级高效编辑器,十分适合前端开发(安装sublime是需要注册的,请支持正版) 1.安装sublime3(http://www.sublimetext.com/3) ...
- 在Windows Server 2012 R2中搭建SQL Server 2012故障转移集群
需要说明的是我们搭建的SQL Server故障转移集群(SQL Server Failover Cluster)是可用性集群,而不是负载均衡集群,其目的是为了保证服务的连续性和可用性,而不是为了提高服 ...
- android 项目中出现红色感叹号的解决方法
问题原因]:工程中classpath中指向的包路径错误 [解决办法]:右键项目名称 BuildPath ---> Configure Build Paht...中,然后上面有几个选项卡找到 Li ...
- MySQL双主(主主)架构方案
在企业中,数据库高可用一直是企业的重中之重,中小企业很多都是使用mysql主从方案,一主多从,读写分离等,但是单主存在单点故障,从库切换成主库需要作改动.因此,如果是双主或者多主,就会增加mysql入 ...
- Hibernate 分组查询 子查询 原生SQL
分组查询: 使用group by关键字对数据分组,使用having关键字对分组数据设定约束条件,从而完成对数据分组和统计 1.1 聚合函数:常被用来实现数据统计功能 ① count() 统计记录条数 ...
- C#.NET 大型通用信息化系统集成快速开发平台 4.1 版本 - .NET商业化成品成熟各种数据权限的需求对应例子代码
还是我上次提出的那个问题问题:假设一个订单表,1.角色A可以看自己的2.角色B可以看工作组的3.角色C可以看金额是1000元以下的(自定义条件是否可行?如果可以,请详细说明)4.角色D可以看整个部门的 ...
- JS截取字符串
使用 substring()或者slice() 函数:split() 功能:使用一个指定的分隔符把一个字符串分割存储到数组例子:str=”jpg|bmp|gif|ico|png”;arr=theStr ...