1. RDD是什么
RDD:Spark的核心概念是RDD (resilient distributed dataset),指的是一个只读的,可分区的弹性分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间可重复使用。

2. 为什么会产生RDD?

(1)传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式中要进行大量的磁盘IO操作。RDD正是解决这一缺点的抽象方法。

(2)RDD是一种有容错机制的特殊集合,可以分布在集群的节点上,以函数式编程操作集合的方式,进行各种并行操作。可以将RDD理解为一个具有容错机制的特殊集合,它提供了一种只读、只能由已存在的RDD变换而来的共享内存,然后将所有数据都加载到内存中,方便进行多次重用。

  a.它是分布式的,可以分布在多台机器上,并行计算。

b.它是弹性的,计算过程中内存不够时它会和磁盘进行数据交换。

   c. 这些限制可以极大的降低自动容错开销

  d.实质是一种更为通用的迭代并行计算框架,用户可以显式的控制计算的中间结果,然后将其自由运用于之后的计算。

(3)RDD的容错机制实现分布式数据集容错的方法有两种:数据检查点记录RDD更新变换序列(血统)

  采用记录更新的方式记录所有更新点的成本很高。所以,RDD只支持粗粒度变换,即只记录单个块上执行的单个操作,然后创建某个RDD的变换序列(血统)存储下来;变换序列指,每个RDD都包含了它是如何由其他RDD变换过来的,以及如何重建某一块数据的信息。因此RDD的容错机制又称“血统”容错。 要实现这种“血统”容错机制,最大的难题就是如何表达父RDD和子RDD之间的依赖关系。

  实际上依赖关系可以分两种,窄依赖和宽依赖:窄依赖:子RDD中的每个数据块只依赖于父RDD中对应的有限个固定的数据块;宽依赖:子RDD中的一个数据块依赖于父RDD中的所有数据块。例如:map变换,子RDD中的数据块只依赖于父RDD中对应的一个数据块;groupByKey变换,子RDD中的数据块会依赖于所有父RDD中的数据块,因为一个key可能存在于父RDD的任何一个数据块中。 将依赖关系分类的两个特性:第一,窄依赖可以在某个计算节点上直接通过计算父RDD的某块数据块得到子RDD对应的某块数据;宽依赖则要等到父RDD所有数据块都计算完成之后,并且父RDD的计算结果进行hash,并传到对应节点上之后才能计算子RDD。第二,数据丢失时,对于窄依赖只需要重新计算丢失的那一块数据来恢复;对于宽依赖则要将祖先RDD中的所有数据块全部重新计算来恢复。所以在长“血统”链特别是有宽依赖的时候,需要在适当的时机设置数据检查点。也是这两个特性要求对于不同依赖关系要采取不同的任务调度机制和容错恢复机制。

(4)RDD内部的设计。每个RDD都需要包含以下四个部分:

  a. 源数据分割后的数据块,源代码中的splits变量

  b.关于“血统”的信息,源码中的dependencies变量

  c.一个计算函数(该RDD如何通过父RDD计算得到),源码中的iterator(split)和compute函数

  d.一些关于如何分块和数据存放位置的元信息,如源码中的partitioner和preferredLocations

  例如:a.一个从分布式文件系统中的文件得到的RDD具有的数据块通过切分各个文件得到的,它是没有父RDD的,它的计算函数只是读取文件的每一行并作为一个元素返回给RDD;b.对于一个通过map函数得到的RDD,它会具有和父RDD相同的数据块,它的计算函数是对每个父RDD中的元素所执行的一个函数

2、RDD在Spark中的地位及作用

(1)为什么会有Spark?因为传统的并行计算模型无法有效的解决 迭代计算(iterative)和 交互式计算(interactive);而Spark的使命便是解决这两个问题,这也是他存在的价值和理由。

(2)Spark如何解决迭代计算?其主要实现思想就是RDD,把所有计算的数据保存在分布式的内存中。迭代计算通常情况下都是对同一个数据集做反复的迭代计算,数据在内存中将大大提升IO操作。这也是Spark涉及的核心:内存计算。

(3)Spark如何实现交互式计算?因为Spark是用scala语言实现的,Spark和scala能够紧密的集成,所以Spark可以完美的运用scala的解释器,使得其中的scala可以像操作本地集合对象一样轻松操作分布式数据集。

(4)Spark和RDD的关系?可以理解为:RDD是一种具有容错性的基于内存的集群计算抽象方法,Spark则是这个抽象方法的实现。

3、如何操作RDD?

(1)如何获取RDD

  a. 从共享的文件系统获取,(如:HDFS)

  b.通过已存在的RDD转换

  c.将已存在scala集合(只要是Seq对象)并行化 ,通过调用SparkContext的parallelize方法实现

  d.改变现有RDD的持久性;RDD是懒散,短暂的。(RDD的固化:cache缓存至内存;save保存到分布式文件系统)

(2)操作RDD的两个动作

  a. Actions:对数据集计算后返回一个数值value给驱动程序;例如:Reduce将数据集的所有元素用某个函数聚合后,将最终结果返回给程序。      

  b.Transformation:根据数据集创建一个新的数据集,计算后返回一个新RDD;例如:Map将数据的每个元素经过某个函数计算后,返回一个新的分布式数据集。

(3)Actions具体内容:

reduce(func) 通过函数func聚集数据集中的所有元素。Func函数接受2个参数,返回一个值。这个函数必须是关联性的,确保可以被正确的并发执行
collect() 在Driver的程序中,以数组的形式,返回数据集的所有元素。这通常会在使用filter或者其它操作后,返回一个足够小的数据子集再使用,直接将整个RDD集Collect返回,很可能会让Driver程序OOM
count() 返回数据集的元素个数
take(n) 返回一个数组,由数据集的前n个元素组成。注意,这个操作目前并非在多个节点上,并行执行,而是Driver程序所在机器,单机计算所有的元素(Gateway的内存压力会增大,需要谨慎使用)
first() 返回数据集的第一个元素(类似于take(1)
saveAsTextFile(path) 将数据集的元素,以textfile的形式,保存到本地文件系统,hdfs或者任何其它hadoop支持的文件系统。Spark将会调用每个元素的toString方法,并将它转换为文件中的一行文本
saveAsSequenceFile(path) 将数据集的元素,以sequencefile的格式,保存到指定的目录下,本地系统,hdfs或者任何其它hadoop支持的文件系统。RDD的元素必须由key-value对组成,并都实现了Hadoop的Writable接口,或隐式可以转换为Writable(Spark包括了基本类型的转换,例如Int,Double,String等等)
foreach(func) 在数据集的每一个元素上,运行函数func。这通常用于更新一个累加器变量,或者和外部存储系统做交互

(4)Transformation具体内容

 

map(func)

返回一个新的分布式数据集,由每个原元素经过func函数转换后组成
filter(func)
返回一个新的数据集,由经过func函数后返回值为true的原元素组成
flatMap(func)
类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)
sample(withReplacement,  frac, seed)
根据给定的随机种子seed,随机抽样出数量为frac的数据
union(otherDataset)
返回一个新的数据集,由原数据集和参数联合而成
groupByKey([numTasks])
在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq[V])对的数据集。注意:默认情况下,使用8个并行任务进行分组,你可以传入numTask可选参数,根据数据量设置不同数目的Task
reduceByKey(func,  [numTasks])
在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。
join(otherDataset,  [numTasks])
在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集
groupWith(otherDataset,  [numTasks])
在类型为(K,V)和(K,W)类型的数据集上调用,返回一个数据集,组成元素为(K, Seq[V], Seq[W]) Tuples。这个操作在其它框架,称为CoGroup
cartesian(otherDataset)
  笛卡尔积。但在数据集T和U上调用时,返回一个(T,U)对的数据集,所有元素交互进行笛卡尔积。

[bigdata] Spark RDD整理的更多相关文章

  1. Spark RDD整理

    参考资料: Spark和RDD模型研究:http://itindex.net/detail/51871-spark-rdd-模型 理解Spark的核心RDD:http://www.infoq.com/ ...

  2. Spark RDD aggregateByKey

    aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark. ...

  3. Spark RDD持久化、广播变量和累加器

    Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内 ...

  4. Spark Rdd coalesce()方法和repartition()方法

    在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量 ...

  5. Spark RDD API详解(一) Map和Reduce

    RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同 ...

  6. Spark RDD解密

    1.  基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数 ...

  7. Spark - RDD(弹性分布式数据集)

    org.apache.spark.rddRDDabstract class RDD[T] extends Serializable with Logging A Resilient Distribut ...

  8. Spark RDD Operations(1)

    以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 ************************************** ...

  9. Spark RDD的依赖解读

    在Spark中, RDD是有依赖关系的,这种依赖关系有两种类型 窄依赖(Narrow Dependency) 宽依赖(Wide Dependency) 以下图说明RDD的窄依赖和宽依赖 窄依赖 窄依赖 ...

随机推荐

  1. 版本管理工具SVN

    此文件根据慕课网 源生活老师的教学视频总结 视频地址 http://www.imooc.com/learn/109 一.SVN下载和安装配置 服务端下载地址 https://www.visualsvn ...

  2. Linux挂载卸载光盘&实践

    在Linux下有时候需要挂载光盘,拷贝文件或安装系统,例如拷贝Redhat操作系统镜像文件等.下面介绍一下在Linux系统下挂载.卸载光盘的方法. 在Linux系统中,每一个物理设备都可以看做是一个文 ...

  3. Linux如何查看JDK的安装路径

    如何在一台Linux服务器上查找JDK的安装路径呢? 有那些方法可以查找定位JDK的安装路径?是否有一些局限性呢? 下面总结了一下如何查找JDK安装路径的方法.   1:echo $JAVA_HOME ...

  4. Nagios学习实践系列——配置研究[监控当前服务器]

    其实上篇Nagios学习实践系列——基本安装篇只是安装了Nagios基本组件,虽然能够打开主页,但是如果不配置相关配置文件文件,那么左边菜单很多页面都打不开,相当于只是一个空壳子.接下来,我们来学习研 ...

  5. Linq专题之提高编码效率—— 第一篇 Aggregate方法

    我们知道linq是一个很古老的东西,大家也知道,自从用了linq,我们的foreach少了很多,但有一个现实就是我们在实际应用中使用到的却是屈指可数 的几个方法,这个系列我会带领大家看遍linq,好的 ...

  6. 从零自学Hadoop(11):Hadoop命令上

    阅读目录 序 概述 Hadoop Common Commands User Commands Administration Commands File System Shell 引用 系列索引 本文版 ...

  7. centos 进度条卡死

    CentOS 6.7 系统 在执行完删除更新包的全部操作之后, yum remove -y Deployment_Guide-en-US finger cups-libs cups ypbind &a ...

  8. OOM killer

    Linux下有一种OOM KILLER 的机制,它会在系统内存耗尽的情况下,启用自己算法有选择性的kill 掉一些进程. 1. 为什么会有OOM killer 当我们使用应用时,需要申请内存,即进行m ...

  9. sql server全文索引使用中的小坑

    一.业务场景 我们在实际生产环境中遇到了这样一种需求,即需要检索一个父子关系的子树数据 估计大家也遇到过类似的场景,最典型的就是省市数据,其中path字段是按层级关系生成的行政区路径: 如果我们已知某 ...

  10. Nginx中的一些匹配顺序

    Nginx中经常需要做各种配置,总结如下: 1.server_name配置 nginx中的server_name指令主要用于配置基于名称虚拟主机,同一个Nginx虚拟主机中,可以绑定多个server_ ...