来源

卷积:

输入尺寸  ,卷积核的大小为  * ,输出的尺寸大小为 

参数量

(1)不考虑bias:
(2)考虑bias:

FLOPs

(1)不考虑bias

解释:先计算输出的中一个元素需要的计算量,即括号这一部分,根据卷积的公式可知这部分为 * + * ,其中前一项表示做了的乘法次数,后一项表示这些乘法结果的相加次数,因为个数相加需要次。所以显然如果考虑bias的话刚好把这个给补回去。

(2)考虑bias

全连接

输入维度,输出

参数量

(1)不考虑bias:

(2)考虑bias:

FLOPs

这个很简单,全连接层就理解为一个矩阵,是矩阵行数,为列数,若不考虑bias,则先计算输出向量中的一个元素需要多少计算量,首先要做次乘法,然后做次加法。若考虑bias,则做的加法会多一次

(1)不考虑bias

(2)考虑bias

Depth-wise CNN(深度可分离卷积)

输入尺寸 ,卷积核的大小为 * ,输出的尺寸大小为

深度可分离卷积的过程:
  1. 将普通卷积分为组,进行卷积的时候是没有普通卷积中在通道维度上求和的过程的
  2. 用一个的卷积核来进行通道融合,所以总的参数量和FLOPs计算如下

    不考虑bias的情况下计算如下:

考虑bias的情况计算如下:

深度学习卷积、全连接层、深度可分离层参数量和FLOPs计算公式的更多相关文章

  1. 对深度学习中全连接层、卷积层、感受野、1×1卷积、池化层、softmax层、全局平均池化的一些理解

    1.全连接层 在卷积神经网络中,在多个卷积层和池化层后,连接着1个或1个以上的全连接层,全连接层把卷积层和池化层提取出来的所有局部特征重新通过权值矩阵组装成一个完整的图,因为用到了所有的局部特征,所以 ...

  2. 深度学习之depthwise separable convolution,计算量及参数量

    目录: 1.什么是depthwise separable convolution? 2.分析计算量.flops 3.参数量 4.与传统卷积比较 5.reference

  3. 深度学习原理与框架-卷积网络细节-图像分类与图像位置回归任务 1.模型加载 2.串接新的全连接层 3.使用SGD梯度对参数更新 4.模型结果测试 5.各个模型效果对比

    对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h ...

  4. 深度学习Keras框架笔记之Dense类(标准的一维全连接层)

    深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...

  5. 深度学习--全连接层、高阶应用、GPU加速

    深度学习--全连接层.高阶应用.GPU加速 MSE均方差 Cross Entropy Loss:交叉熵损失 Entropy 熵: 1948年,香农将统计物理中熵的概念,引申到信道通信的过程中,从而开创 ...

  6. 深度学习基础系列(十)| Global Average Pooling是否可以替代全连接层?

    Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术.在keras发布的经典模型中,可以看到不少模型甚至 ...

  7. 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

    一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...

  8. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  9. caffe中全卷积层和全连接层训练参数如何确定

    今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...

  10. fc全连接层的作用、卷积层的作用、pooling层、激活函数的作用

    fc:1.起到分类器的作用.对前层的特征进行一个加权和,(卷积层是将数据输入映射到隐层特征空间)将特征空间通过线性变换映射到样本标记空间(也就是label) 2.1*1卷积等价于fc:跟原featur ...

随机推荐

  1. 简单聊聊WebDAV

    1.什么是WebDAV? WebDAV是一种基于HTTP协议的扩展,旨在提供在Web服务器上进行文件管理的标准化解决方案.它允许用户通过网络对远程主机上的文件进行读写.编辑和删除操作.与传统的HTTP ...

  2. DrawIO安装及基本使用教程

    1.DrawIO简介 DrawIO 是一款开源免费且功能强大的绘图工具,可以用于绘制流程图.组织结构图.网络图.UML图等各种类型的图表: DrawIO 支持多种文件格式,包括XML.PNG.SVG等 ...

  3. 强化学习 —— reinforce算法中更新一次策略网络时episodes个数的设置对算法性能的影响 —— reinforce算法中迭代训练一次神经网络时batch_size大小的不同设置对算法性能的影响

    本文相关的博客:(预先知识) 强化学习中经典算法 -- reinforce算法 -- (进一步理解, 理论推导出的计算模型和实际应用中的计算模型的区别) 本文代码地址: https://gitee.c ...

  4. csv或excel文件通过plsql导入到oracle数据库中

    1.背景 实际开发中经常遇到将数据直接导入到数据库中,操作如下 2.操作 第一步: 第二步:选择要导入的csv文件 第三步:选择数据库表字段与csv的列对应,然后点击导入,完成 完美!

  5. Canvas简历编辑器-图形绘制与状态管理(轻量级DOM)

    Canvas简历编辑器-图形绘制与状态管理(轻量级DOM) 在前边我们聊了数据结构的设计和剪贴板的数据操作,那么这些操作都还是比较倾向于数据相关的操作,那么我们现在就来聊聊基本的图形绘制以及图形状态管 ...

  6. 新兴互联网银行搭档Apache SeaTunnel构建数据流通管道!

    当新兴互联网银行乘着数字化改革的风潮搭档数据集成平台Apache SeaTunnel,成千万上亿的数据就有了快速流通的管道.6月26日14:00,Apache SeaTunnel社区将带上企业最佳实践 ...

  7. 【牛客刷题】HJ68 成绩排序

    题目链接 这题本身就是一个排序题,按照学生成绩排序,成绩一样的按照输入的前后顺序排. 如果用Java,那么利用ArrayList能很轻松的完成: import java.util.ArrayList; ...

  8. 和xshell和crt说再见,认识了一款55k star多端跨平台终端神器,强大酷炫

    一.Tabby简介 Tabby(以前称为Terminus)是一款高度可配置的终端仿真器.SSH 和串行客户端.开源且跨平台,支持在Windows.macOS和Linux系统下使用. 源码下载 http ...

  9. 2024-08-17:用go语言,给定一个从0开始的整数数组nums和一个整数k, 每次操作可以删除数组中的最小元素。 你的目标是通过这些操作,使得数组中的所有元素都大于或等于k。 请计算出实现这个目

    2024-08-17:用go语言,给定一个从0开始的整数数组nums和一个整数k, 每次操作可以删除数组中的最小元素. 你的目标是通过这些操作,使得数组中的所有元素都大于或等于k. 请计算出实现这个目 ...

  10. Go 进程在容器中无 coredump 产生问题分析

    Go 进程在容器中无 coredump 产生问题分析 0x01 起因 coredump 作为一种非常重要的高度手段,在日常开发中经常用到,切换到容器环境后一直没关注.最近测试了下,发现出不了 core ...