N元文法的统计

二元概率方程:

\[P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}
\]

三元概率估计方程:

\[P(w_n|w_{n-2},w_{n-1}) = \frac{C(w_{n-2;n-1}w_n)}{C(w_{n-2;n-1})}
\]

例题1

给出以下一个小型语料库,在最大似然一元模型和二元模型之间使用加一平滑法进行平滑, 请计算P(Sam|am)。注意要将tokens 和与其他单词一样看待。

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

\(P(Sam|am) = \frac{C(am;Sam)}{C(am)} = \frac{2}{3}\)

\(P_{Laplace}(Sam|am) = \frac{C(am;Sam)+1}{C(am)+|V|} = \frac{2+1}{3+11} = \frac{3}{14}\)

注意:V是不同单词的种类!!是词汇表的大小

例题2

在1的条件下,请使用线性插值法,其中假设 λ1 = 1/2, λ2 =1/2,请计算P(Sam|am)。注意要将tokens 和与其他单词一样看待。

\(P(Sam) = \frac{C(Sam)}{S} =\frac{4}{25}\)

注意:S是单词出现的总次数!!

\(P(am) = \frac{3}{25}\)

统计\(bigram\)数量,\(P(Sam|am) = \frac{2}{3}\)

根据线性插值法,

\[\begin{aligned}
P(Sam|am) &= \lambda_2 \times P(Sam|am) + \lambda_1 \times P(Sam)\\
&= 0.5 \times \frac{2}{3} + 0.5 \times \frac{3}{25} \\
&= \frac{31}{75}
\end{aligned}
\]

例题3

给定一个包含 100 个数字的训练集,其中包含 91 个0和 1-9 其他数字中的每个数字。 有以下的测试集:0 0 0 0 0 3 0 0 0 0。计算该问题的一元困惑度 unigram perplexity。

困惑度

\[PP(W) = P(w_1w_2 \dots w_N)^{-\frac{1}{N}}
\]

困惑度越小,概率越大。

\(P(0) = 91 / 100 = 0.91;\)

\(P(1;9) = 1 / 100 = 0.01;\)

\(PP(W) = (P(0)p(0)p(0)p(0)p(0)p(3)p(0)p(0)p(0)p(0))^{-0.1} = 1.725\)

NLP复习之N元文法的更多相关文章

  1. 【转】统计模型-n元文法

    在谈N-Gram模型之前,我们先来看一下Mrkove假设: 1.一个词的出现仅仅依赖于它前面出现的有限的一个或者几个词: 2.一个词出现的概率条件地依赖于前N-1个词的词类. 定义 N-Gram是大词 ...

  2. 算法复习——高斯消元(ssoi)

    题目: 题目描述 Tom 是个品学兼优的好学生,但由于智商问题,算术学得不是很好,尤其是在解方程这个方面.虽然他解决 2x=2 这样的方程游刃有余,但是对于下面这样的方程组就束手无策了.x+y=3x- ...

  3. DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec

    DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...

  4. NLP十大里程碑

    NLP十大里程碑 2.1 里程碑一:1985复杂特征集 复杂特征集(complex feature set)又叫做多重属性(multiple features)描写.语言学里,这种描写方法最早出现在语 ...

  5. NLP之语言模型

    参考: https://mp.weixin.qq.com/s/NvwB9H71JUivFyL_Or_ENA http://yangminz.coding.me/blog/post/MinkolovRN ...

  6. 【NLP】中文分词:原理及分词算法

    一.中文分词 词是最小的能够独立活动的有意义的语言成分,英文单词之间是以空格作为自然分界符的,而汉语是以字为基本的书写单位,词语之间没有明显的区分标记,因此,中文词语分析是中文信息处理的基础与关键. ...

  7. 实战HMM-Viterbi角色标注地名识别

    http://www.hankcs.com/nlp/ner/place-names-to-identify-actual-hmm-viterbi-role-labeling.html 命名实体识别(N ...

  8. word2vec原理浅析

     1.word2vec简介 word2vec,即词向量,就是一个词用一个向量来表示.是2013年Google提出的.word2vec工具主要包含两个模型:跳字模型(skip-gram)和连续词袋模型( ...

  9. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  10. Nature重磅:Hinton、LeCun、Bengio三巨头权威科普深度学习

    http://wallstreetcn.com/node/248376 借助深度学习,多处理层组成的计算模型可通过多层抽象来学习数据表征( representations).这些方法显著推动了语音识别 ...

随机推荐

  1. 月工资不到10元的内容审核专员? - ChatGPT 在内容自动审查中的应用

    内容过滤筛查是指对网络上发布或传播的文本.图片.视频等内容进行审核和监管,以防止出现违法违规.暴力色情.虚假广告.电信诈骗等现象,维护网络安全和社会秩序. 内容过滤筛查是一个亟待解决的问题,因为网络内 ...

  2. 安装软件提示 "无法完成操作, 因为文件包含病毒或潜在的垃圾软件" 如何处理

    在Windows端安装一些小众电脑软件的时候,经常会遇到无法安装的问题,比较常见的情况是会提示 "无法完成操作, 因为文件包含病毒或潜在的垃圾软件", 或者提示"不能执行 ...

  3. KRPANO资源分析工具下载网展全景图

    示:目前分析工具中的全景图下载功能将被极速全景图下载大师替代,相比分析工具,极速全景图下载大师支持更多的网站(包括各类KRPano全景网站,和百度街景) 详细可以查看如下的链接: 极速全景图下载大师官 ...

  4. 制作一个内部的 zabbix-agent 快速部署脚本

    下载官方的基础 agent 部署包 官方地址:点击到达 curl -O https://cdn.zabbix.com/zabbix/binaries/stable/5.0/5.0.36/zabbix_ ...

  5. flask中cookies的使用

    flask中cookies的使用 在Flask中对cookie的处理 1. 设置cookie: 设置cookie,默认有效期是临时cookie,浏览器关闭就失效 可以通过 max_age 设置有效期, ...

  6. vue指令 v-if

    1.字符'0'也显示为真 <div v-if="zeroStr">明月几时有,把酒问青天.</div> data() { zeroStr: '0' } 运行 ...

  7. 9.2 运用API实现线程同步

    Windows 线程同步是指多个线程一同访问共享资源时,为了避免资源的并发访问导致数据的不一致或程序崩溃等问题,需要对线程的访问进行协同和控制,以保证程序的正确性和稳定性.Windows提供了多种线程 ...

  8. Vue之事件冒泡

    1. 原生事件冒泡 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  9. 多维评测指标解读第17届MSU世界编码器大赛全高清10bit赛道结果

    超高清视频纤毫毕现的关键一环. 01 主要指标多项第一,带宽节省48% 近日,第17届MSU世界编码器大赛全高清10bit赛道成绩揭晓,阿里自研的H.266/VVC编码器Ali266在该赛道最高效的1 ...

  10. Jenkins软件平台安装部署

    1.Jenkins软件平台概念剖解: 基于主流的Hudson/Jenkins平台工具实现全自动网站部署.网站测试.网站回滚会大大的减轻网站部署的成本,Jenkins的前身为Hudson,Hudson主 ...