摘要:在信息结构化提取领域,前人一般需要基于人工标注的模板来完成信息结构化提取。论文提出一种zero-shot的基于图卷积网络的解决方案,可以解决训练集和测试集来自不同垂直领域的问题。

本文分享自华为云社区《论文解读系列十六:Zero-Shot场景下的信息结构化提取》,作者:一笑倾城。

摘要

在信息结构化提取领域,前人一般需要基于人工标注的模板来完成信息结构化提取。论文提出一种zero-shot的基于图卷积网络的解决方案,可以解决训练集和测试集来自不同垂直领域的问题。

Figure 1. 训练和推理数据来源的垂直领域不一样。

问题定义

Figure 2. OpenIE和ClosedIE的直观理解。

Relatin Extraction

  • Close Relation Extraction (ClasedIE)
    RR表示类别集合,包含无类别,模型直接为每个实体分配类别即可。
  • Open Relation Extraction(OpenIE)
    RR表示类别集合,模型作两类分类,判断一个实体是否是另一个实体的key。

Zero-Shot Extraction

Zero-Shot按难度分可以区分如下:

  • Unseen-Website Zero-shot Extraction
    即同一垂直领域的不同版式,比如,都是来自电影的网页。只是推理测试的时候使用的网页排版与训练不一样。
  • Unseen-Websiste Zero-shot Extraction
    即不同垂直领域的不同版式,比如,训练是来自电影的网页,而推理测试的时候使用的可能是招聘类网站的网页。

论文提出的解决方案其实是发掘出图网络中全部的key-value对,由于发掘key-value这个任务本身是版式不依赖的,从而起到了跨领域的版式结构解析。

概念

  • relation: 指key
  • object:指value
  • relationship: 指key -> value

编码器(特征构建)

节点信息的构建由图GG来完成,包括一系列的节点NN(实体),和节点之间的边E(Edges)。

基于设计的规则来构建实体之间的关系

以下情况下,会构建节点之间的边(key-value对经常是上下关系或左右关系):

  • 水平情况:水平邻居,而且中间没有其它节点;
  • 垂直情况:垂直邻居,而且中间没有其它节点;
  • 同级情况:同级节点;

使用图网络来实体之间的关系进进建模

基于Graph Attention Network (GAT)来对节点关系进行建模,节点初始(输入)特征:

  • 视觉特征:网页中对节点的视觉类描述;
  • 文本特征:OpenIE是对预训练Bert进行特征平均,CloseIE则是统计该节点字符串出现的频率(似乎对跨领域更友好);

预训练机制

论文设计了辅助的损失函数L_{pre}Lpre​进行三类分类的监督:{key, value, other}。同时为了防止训练过程过拟合,预训练完成后,OpenIE任务中的图网络权重不会更新。

关系预测网络

OpenIE

判断一对节点是否满足第一个节点字符串内容是第二个节点字符串内容的key:

  • 使用the candidate pair identification algorithm来获取潜在的字符串对;
  • 两个节点的原始输入特征+GNN输出特征+两个节点的关系特征作为分类器输入;
  • 全连接网络进行分类;

ClosedIE

交叉熵多类分类

实验

  • 确实是跨领域任务更加困难。

  • CloseIE:确实是网址越多,效果越好。

  • 确认各个因素对网络模型效果的影响。

点击关注,第一时间了解华为云新鲜技术~

论文解读丨Zero-Shot场景下的信息结构化提取的更多相关文章

  1. 论文解读丨表格识别模型TableMaster

    摘要:在此解决方案中把表格识别分成了四个部分:表格结构序列识别.文字检测.文字识别.单元格和文字框对齐.其中表格结构序列识别用到的模型是基于Master修改的,文字检测模型用到的是PSENet,文字识 ...

  2. 论文解读丨基于局部特征保留的图卷积神经网络架构(LPD-GCN)

    摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留 ...

  3. 论文解读丨【CVPR 2022】不使用人工标注提升文字识别器性能

    摘要:本文提出了一种针对文字识别的半监督方法.区别于常见的半监督方法,本文的针对文字识别这类序列识别问题做出了特定的设计. 本文分享自华为云社区<[CVPR 2022] 不使用人工标注提升文字识 ...

  4. CVPR2020论文解读:OCR场景文本识别

    CVPR2020论文解读:OCR场景文本识别 ABCNet:  Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文 ...

  5. 自监督学习(Self-Supervised Learning)多篇论文解读(下)

    自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...

  6. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  7. 数据库顶会VLDB论文解读:阿里数据库智能参数优化的创新与实践

    前言 一年一度的数据库领域顶级会议VLDB 2019于美国当地时间8月26日-8月30日在洛杉矶召开.在本届大会上,阿里云数据库产品团队多篇论文入选Research Track和Industrial ...

  8. [论文解读] 阿里DIEN整体代码结构

    [论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...

  9. CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状

    CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状 ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Sha ...

  10. CVPR2020论文解读:三维语义分割3D Semantic Segmentation

    CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3 ...

随机推荐

  1. ELK中 Elasticsearch和Logstash内存大小设置的考虑

    本文为博主原创,转载请注明出处: 在ELK(Elasticsearch.Logstash和Kibana)日志采集和分析场景中,适当设置Logstash和Elasticsearch的内存大小非常重要.这 ...

  2. Html文本学习内容-2

    (一)文本 1.大小写转换 text-transform属于处理文本的大小写,有4个值: none(默认值) uppercase(全部大写) lowercase(全部小写) capitalize(首字 ...

  3. DP:摆动序列

    问题描述 如果一个序列满足下面的性质,我们就将它称为摆动序列: 1. 序列中的所有数都是不大于k的正整数: 2. 序列中至少有两个数. 3. 序列中的数两两不相等: 4. 如果第i – 1个数比第i ...

  4. 从旺店通·企业奇门到用友U8通过接口集成数据

    从旺店通·企业奇门到用友U8通过接口集成数据 接入系统:旺店通·企业奇门 慧策(原旺店通)是一家技术驱动型智能零售服务商,基于云计算PaaS.SaaS模式,以一体化智能零售解决方案,帮助零售企业数字化 ...

  5. 一文带你掌握C语言的循环结构

    C语言循环结构详解 在C语言中,循环结构是一种重要的控制结构,它允许我们重复执行一段代码,以达到特定的目的.循环结构可以帮助我们简化重复性的任务,提高代码的效率.本篇文章将深入探讨C语言中的循环结构, ...

  6. 关于win11系统修改用户名导致登录进入不了系统的坑

    背景:公司的新电脑,win11系统,开机进入需要注册用户名和密码,在取用户名的时候,手快没注意取了一个中文名,结果这给我后面的工作带来了一个坑,我在用mysqlworkbench进行数据备份,需要对数 ...

  7. AtCoder_abc329

    AtCoder_abc329 比赛链接 A - Spread A题链接 题目大意 输入一个字符串由大写字母组成的\(S\),输出\(S\)并在每一个字符之间加上空格 解题思路 随便打打就能过.jpg ...

  8. [CF1748E] Yet Another Array Counting Problem

    题目描述 The position of the leftmost maximum on the segment $ [l; r] $ of array $ x = [x_1, x_2, \ldots ...

  9. Lucas定理 、斯特灵公式

    斯特灵公式是一条用来取n阶乘的近似值的数学公式. 公式为: 用该公式我们可以用来估算n阶乘的值:估算n阶乘的在任意进制下的位数. 如何计算在R进制下的位数:我们可以结合对数来计算,比如十进制就是lg( ...

  10. NetSuite Tips —— 发送邮件未被接收或被退回

    Background: NS 发送的邮件过于频繁被邮箱系统识别为垃圾邮件,被拒收或被拦截 Solution: 添加以下邮箱地址到白名单 system@sent-via.netsuite.com nlm ...