深度学习和大脑的关联性

  • 开始讲故事(手动狗头)

深度学习和大脑有什么关联性吗?

关联不大。

那么为什么会说深度学习和大脑相关呢?

当你在实现一个神经网络的时候,那些公式是你在做的东西,你会做前向传播、反向传播、梯度下降法,其实很难表述这些公式具体做了什么,深度学习像大脑这样的类比其实是过度简化了我们的大脑具体在做什么,但因为这种形式很简洁,也能让普通人更愿意公开讨论,也方便新闻报道并且吸引大众眼球,但这个类比是非常不准确的。

一个神经网络的逻辑单元可以看成是对一个生物神经元的过度简化,但迄今为止连神经科学家都很难解释究竟一个神经元能做什么,它可能是极其复杂的;它的一些功能可能真的类似logistic回归的运算,但单个神经元到底在做什么目前还没有人能够真正可以解释。

深度学习的确是个很好的工具来学习各种很灵活很复杂的函数,学习到从\(x\)到\(y\)的映射,在监督学习中学到输入到输出的映射。

但这个类比还是很粗略的,这是一个logistic回归单元的sigmoid激活函数,这里是一个大脑中的神经元,图中这个生物神经元,也是你大脑中的一个细胞,它能接受来自其他神经元的电信号,比如\(x_1,x_2,x_3\),或可能来自于其他神经元\(a_1,a_2,a_3\) 。其中有一个简单的临界计算值,如果这个神经元突然激发了,它会让电脉冲沿着这条长长的轴突,或者说一条导线传到另一个神经元。

所以这是一个过度简化的对比,把一个神经网络的逻辑单元和右边的生物神经元对比。至今为止其实连神经科学家们都很难解释,究竟一个神经元能做什么。一个小小的神经元其实却是极其复杂的,以至于我们无法在神经科学的角度描述清楚,它的一些功能,可能真的是类似logistic回归的运算,但单个神经元到底在做什么,目前还没有人能够真正解释,大脑中的神经元是怎么学习的,至今这仍是一个谜之过程。到底大脑是用类似于后向传播或是梯度下降的算法,或者人类大脑的学习过程用的是完全不同的原理。

所以虽然深度学习的确是个很好的工具,能学习到各种很灵活很复杂的函数来学到从x到y的映射。在监督学习中,学到输入到输出的映射,但这种和人类大脑的类比,在这个领域的早期也许值得一提。但现在这种类比已经逐渐过时了,我自己也在尽量少用这样的说法。

这就是神经网络和大脑的关系,我相信在计算机视觉,或其他的学科都曾受人类大脑启发,还有其他深度学习的领域也曾受人类大脑启发。但是个人来讲我用这个人类大脑类比的次数逐渐减少了。

神经网络入门篇:深度学习和大脑的关联性(What does this have to do with the brain?)的更多相关文章

  1. MongoDB索引(一) --- 入门篇:学习使用MongoDB数据库索引

    这个系列文章会分为两篇来写: 第一篇:入门篇,学习使用MongoDB数据库索引 第二篇:进阶篇,研究数据库索引原理--B/B+树的基本原理 1. 准备工作 在学习使用MongoDB数据库索引之前,有一 ...

  2. 卷积神经网络CNN与深度学习常用框架的介绍与使用

    一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...

  3. pytorch入门--土堆深度学习快速入门教程

    工具函数 dir函数,让我们直到工具箱,以及工具箱中的分隔区有什么东西 help函数,让我们直到每个工具是如何使用的,工具的使用方法 示例:在pycharm的console环境,输入 import t ...

  4. Pandas快速入门(深度学习入门2)

    源地址为:http://pandas.pydata.org/pandas-docs/stable/10min.html#min Pandas(Python Data Analysis Library) ...

  5. Pytorch_第六篇_深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数

    深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习 ...

  6. 深度学习与CV教程(4) | 神经网络与反向传播

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  7. (转)神经网络和深度学习简史(第一部分):从感知机到BP算法

    深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...

  8. Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时

    Hinton“深度学习之父”和“神经网络先驱”,新论文Capsule将推翻自己积累了30年的学术成果时 在论文中,Capsule被Hinton大神定义为这样一组神经元:其活动向量所表示的是特定实体类型 ...

  9. 深度学习与CV教程(6) | 神经网络训练技巧 (上)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  10. 学习《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码

    入门神经网络深度学习,推荐学习<深度学习入门:基于Python的理论与实现>,这本书不来虚的,一上来就是手把手教你一步步搭建出一个神经网络,还能把每一步的出处讲明白.理解神经网络,很容易就 ...

随机推荐

  1. python-手机自动化

    摘取:https://www.byhy.net/tut/auto/appium/01/ 用途和特点 Appium 是一个移动 App (手机应用)自动化工具. 手机APP 自动化有什么用? 自动化完成 ...

  2. Go 函数多返回值错误处理与error 类型介绍

    Go 函数多返回值错误处理与error 类型介绍 目录 Go 函数多返回值错误处理与error 类型介绍 一.error 类型与错误值构造 1.1 Error 接口介绍 1.2 构造错误值的方法 1. ...

  3. LVS+keepalived结合

    LVS+Keepalived实现高可用负载均衡(web集群) LVS+Keepalived架构图:   测试环境: 名称 操作系统 IP地址 LVS-MASTER Centos7.x 192.168. ...

  4. 查找数组中第K大的元素

    要查找一个数组中的第 K 大元素,有多种方法可以实现,其中常用的方法是使用分治算法或快速选择算法,这两种方法的时间复杂度到时候O(n). 快速选择算法示例: package main import & ...

  5. 🔥🔥想快速进入人工智能领域的Java程序员?你准备好了吗?

    引言 今天我们来探讨一下作为Java程序员,如何迅速融入人工智能的领域.,当前有一些流行的LLMs选择,例如ChatGPT.科大讯飞的星火.通义千问和文心一言等.如果你还没有尝试过这些工具,那么现在也 ...

  6. 28. 干货系列从零用Rust编写正反向代理,项目日志的源码实现

    wmproxy wmproxy已用Rust实现http/https代理, socks5代理, 反向代理, 静态文件服务器,四层TCP/UDP转发,内网穿透,后续将实现websocket代理等,会将实现 ...

  7. 🔥🔥Java开发者的Python快速进修指南:网络编程及并发编程

    今天我们将对网络编程和多线程技术进行讲解,这两者的原理大家都已经了解了,因此我们主要关注的是它们的写法区别.虽然这些区别并不是非常明显,但我们之所以将网络编程和多线程一起讲解,是因为在学习Java的s ...

  8. RPN FPN ROIPooling

    RPN(Region Proposal Network)介绍---> 特点从backbone 生成的Feture Map中 用一个 3x3 的Conv卷积核 遍历FeatureMap的每个点然后 ...

  9. Visual Studio安装教程

    一.官网下载 地址:下载 Visual Studio Tools - 免费安装 Windows.Mac.Linux (microsoft.com) 二.安装 1.双击开始安装 2.等待一段时间,打开配 ...

  10. 前端学习-html-1

    html常用标签 h1-h6:标题 p:段落 strong/em: 对文本进行设置    strong--加粗,强调作用  比如:商品价格    em--斜体,对文本内容修饰成斜体 hr/br: hr ...