题目链接

题目

题目描述

Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

For example for the tree:



the solution is one soldier ( at the node 1).

输入描述:

The input contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes

the description of each node in the following format

node_identifier:(number_of_roads) \(node\_identifier_1\) \(node\_identifier_2\) ... \(node\_identifier_{number\_of\_roads }\)

or

node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes \((0 \lt n \leq 1500)\) ;the number_of_roads in each line of input will no more than 10. Every edge appears only once in the input data.

输出描述

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following:

示例1

输入

4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)

输出

1
2

题解

知识点:树形dp

题目要求最少点覆盖所有边(最小点覆盖),一个点能覆盖所连的所有边,所以有如下情况。

以 \(1\) 为根,设 \(dp[u][0/1]\) 表示以 \(u\) 为根的子树,\(u\) 的状态是不选/选的最小值。转移方程为:

\[\left \{
\begin{array}{l}
dp[u][0] = \sum dp[v_i][1]\\
dp[u][1] = \sum \min(dp[v_i][0],dp[v_i][1])
\end{array}
\right .
\]

表示 \(u\) 不选则孩子必须选;\(u\) 选了孩子可选可不选,取最小值。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

vector<int> g[1507];
int dp[1507][2]; ///快读
template<class T>
inline void read(T &val) {
T x = 0, f = 1;char c = getchar();
while (c < '0' || c>'9') { if (c == '-') f = -1;c = getchar(); }///整数符号
while (c >= '0' && c <= '9') { x = (x << 3) + (x << 1) + (c ^ 48);c = getchar(); }///挪位加数
val = x * f;
} void dfs(int u, int fa) {
for (auto v : g[u]) {
if (v == fa) continue;
dfs(v, u);
dp[u][0] += dp[v][1];
dp[u][1] += min(dp[v][0], dp[v][1]);
}
dp[u][1]++;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
while (~scanf("%d", &n)) {
memset(dp, 0, sizeof(dp));
for (int u = 0;u < n;u++) g[u].clear();
for (int i = 1;i <= n;i++) {
int u, cnt;
read(u);
read(cnt);
for (int j = 1, v;j <= cnt;j++) {
read(v);
g[u].push_back(v);
g[v].push_back(u);
}
}
dfs(0, -1);
cout << min(dp[0][0], dp[0][1]) << '\n';
}
return 0;
}

NC51222 Strategic game的更多相关文章

  1. HDU1054 Strategic Game——匈牙利算法

    Strategic Game Bob enjoys playing computer games, especially strategic games, but sometimes he canno ...

  2. DDD:Strategic Domain Driven Design with Context Mapping

    Introduction Many approaches to object oriented modeling tend not to scale well when the application ...

  3. poj 1463 Strategic game DP

    题目地址:http://poj.org/problem?id=1463 题目: Strategic game Time Limit: 2000MS   Memory Limit: 10000K Tot ...

  4. UVA 1292 十二 Strategic game

    Strategic game Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Sta ...

  5. hdu---(1054)Strategic Game(最小覆盖边)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. HDU 1054:Strategic Game

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. POJ1463:Strategic game(树形DP)

    Description Bob enjoys playing computer games, especially strategic games, but sometimes he cannot f ...

  8. hdoj 1054 Strategic Game【匈牙利算法+最小顶点覆盖】

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. Making the Elephant Dance: Strategic Enterprise Analysis

    http://www.modernanalyst.com/Resources/Articles/tabid/115/ID/2934/categoryId/23/Making-the-Elephant- ...

  10. (hdu step 6.3.1)Strategic Game(求用最少顶点数把全部边都覆盖,使用的是邻接表)

    题目: Strategic Game Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. Spring Cloud 系列:Seata 中TCC模式具体实现

    概述 https://seata.io/zh-cn/docs/dev/mode/tcc-mode https://seata.io/zh-cn/docs/user/mode/tcc TCC模式与AT模 ...

  2. 使用Swagger,在编写配置类时报错Caused by: java.lang.NullPointerException: Cannot invoke "org.springframework.web.servlet.mvc.condition.PatternsRequestCondition.getPatterns()" because "this.condition" is null

    1.问题 Caused by: java.lang.NullPointerException: Cannot invoke "org.springframework.web.servlet. ...

  3. 【MicroPython】用 c 添加接口 -- 添加 type

    [来源]https://www.eemaker.com/micropython-type.html

  4. [转帖]ARM内核全解析,从ARM7,ARM9到Cortex-A7,A8,A9,A12,A15到Cortex-A53,A57

    https://www.cnblogs.com/senior-engineer/p/8668723.html 前不久ARM正式宣布推出新款ARMv8架构的Cortex-A50处理器系列产品,以此来扩大 ...

  5. [转帖]一次ORA-3136的处理

    https://oracleblog.org/working-case/deal-with-ora3136/ 最近收到一个告警,用户说数据库无法连接,但是从监控上看,oracle的后台进程已经侦听进程 ...

  6. [转帖]GPT4All 一个开源 ChatGPT

    https://zhuanlan.zhihu.com/p/618947904 通用预训练语言模型. ChatGPT 正在迅速发展与传播,新的大型语言模型 (LLM) 正在以越来越快的速度开发.就在过去 ...

  7. [转帖]nmon使用及监控数据分析

    [使用] [监控数据分析] 参考链接:nmon监控数据分析 性能测试中,各个服务器资源占用统计分析是一个很重要的组成部分,通常我们使用nmon这个工具来进行监控以及监控结果输出. 一.在监控阶段使用类 ...

  8. [转帖]Elasticsearch 技术分析(七): Elasticsearch 的性能优化

    https://www.cnblogs.com/jajian/p/10176604.html 硬件选择# Elasticsearch(后文简称 ES)的基础是 Lucene,所有的索引和文档数据是存储 ...

  9. mysql 获取 今天是今年的第几天, 以及 还有多少天元旦的方法

    1. 获取今天是这一年的第几天 select dayofyear(curdate()); 或者是 select dayofyear(now()); 2. 获取还有多少天元旦的方法 select dat ...

  10. [译]深入了解现代web浏览器(一)

    本文是根据Mariko Kosaka在谷歌开发者网站上的系列文章https://developer.chrome.com/blog/inside-browser-part1/ 翻译而来,共有四篇,该篇 ...