NC51222 Strategic game
题目
题目描述
Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?
Your program should find the minimum number of soldiers that Bob has to put for a given tree.
For example for the tree:

the solution is one soldier ( at the node 1).
输入描述:
The input contains several data sets in text format. Each data set represents a tree with the following description:
the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) \(node\_identifier_1\) \(node\_identifier_2\) ... \(node\_identifier_{number\_of\_roads }\)
or
node_identifier:(0)
The node identifiers are integer numbers between 0 and n-1, for n nodes \((0 \lt n \leq 1500)\) ;the number_of_roads in each line of input will no more than 10. Every edge appears only once in the input data.
输出描述
The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following:
示例1
输入
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
输出
1
2
题解
知识点:树形dp
题目要求最少点覆盖所有边(最小点覆盖),一个点能覆盖所连的所有边,所以有如下情况。
以 \(1\) 为根,设 \(dp[u][0/1]\) 表示以 \(u\) 为根的子树,\(u\) 的状态是不选/选的最小值。转移方程为:
\begin{array}{l}
dp[u][0] = \sum dp[v_i][1]\\
dp[u][1] = \sum \min(dp[v_i][0],dp[v_i][1])
\end{array}
\right .
\]
表示 \(u\) 不选则孩子必须选;\(u\) 选了孩子可选可不选,取最小值。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
vector<int> g[1507];
int dp[1507][2];
///快读
template<class T>
inline void read(T &val) {
T x = 0, f = 1;char c = getchar();
while (c < '0' || c>'9') { if (c == '-') f = -1;c = getchar(); }///整数符号
while (c >= '0' && c <= '9') { x = (x << 3) + (x << 1) + (c ^ 48);c = getchar(); }///挪位加数
val = x * f;
}
void dfs(int u, int fa) {
for (auto v : g[u]) {
if (v == fa) continue;
dfs(v, u);
dp[u][0] += dp[v][1];
dp[u][1] += min(dp[v][0], dp[v][1]);
}
dp[u][1]++;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
while (~scanf("%d", &n)) {
memset(dp, 0, sizeof(dp));
for (int u = 0;u < n;u++) g[u].clear();
for (int i = 1;i <= n;i++) {
int u, cnt;
read(u);
read(cnt);
for (int j = 1, v;j <= cnt;j++) {
read(v);
g[u].push_back(v);
g[v].push_back(u);
}
}
dfs(0, -1);
cout << min(dp[0][0], dp[0][1]) << '\n';
}
return 0;
}
NC51222 Strategic game的更多相关文章
- HDU1054 Strategic Game——匈牙利算法
Strategic Game Bob enjoys playing computer games, especially strategic games, but sometimes he canno ...
- DDD:Strategic Domain Driven Design with Context Mapping
Introduction Many approaches to object oriented modeling tend not to scale well when the application ...
- poj 1463 Strategic game DP
题目地址:http://poj.org/problem?id=1463 题目: Strategic game Time Limit: 2000MS Memory Limit: 10000K Tot ...
- UVA 1292 十二 Strategic game
Strategic game Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Sta ...
- hdu---(1054)Strategic Game(最小覆盖边)
Strategic Game Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU 1054:Strategic Game
Strategic Game Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- POJ1463:Strategic game(树形DP)
Description Bob enjoys playing computer games, especially strategic games, but sometimes he cannot f ...
- hdoj 1054 Strategic Game【匈牙利算法+最小顶点覆盖】
Strategic Game Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- Making the Elephant Dance: Strategic Enterprise Analysis
http://www.modernanalyst.com/Resources/Articles/tabid/115/ID/2934/categoryId/23/Making-the-Elephant- ...
- (hdu step 6.3.1)Strategic Game(求用最少顶点数把全部边都覆盖,使用的是邻接表)
题目: Strategic Game Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
随机推荐
- 小程序:Now you can provide attr `wx:key` for a `wx:for` to improve performance. 的解决方案
在wx:for后面添加wx:key="key" 可消除警告 <view wx:for="{{thisWeekMovies}}" wx:for-index= ...
- c# 创建一个只接收消息的窗口
/// <summary> /// WM_COPYDATA消息,进程间传输信息专用结构 /// </summary> public struct COPYDATASTRUCT ...
- android studio 如何把依赖导出成 jar
反编译工具 dex-tools-2.1-SNAPSHOT 第一步 用一个普通的app工程,引用所有的库,然后生成apk文件 第二步 把apk文件,改扩展名为zip,解压后,里面有几个*.dex文件,拷 ...
- [转帖]Dockerfile中CMD和ENTRYPOINT命令详解
https://www.jb51.net/article/136264.htm Dockerfile中的ENTRYPOINT指令和CMD指令都可以设置容器启动时要执行的命令,但用途是有略微不同的. ...
- [转帖]Linux—vi/vim批量注释及取消注释
https://www.jianshu.com/p/45c252e9d2b6 应用场景 在开发场景中,经常遇到对一些配置文件进行注释,当然如果确定不用的时候我们可以通过vim中的D命令进行删除.当 ...
- [转帖]java -d 参数(系统属性) 和 环境变量
https://www.cnblogs.com/limeiyang/p/16565920.html 1. -d 参数说明 通过 java -h 查看可知: 注意:-D= : set a system ...
- [转帖]shell删除文件前几行或后几行
https://www.cnblogs.com/1394htw/p/14852207.html shell删除文件前几行或后几行 #!/bin/bash #删除前两行 sed -i '1,2d' fi ...
- 使用TFS CI 又想保留服务运行状态的简单方法
最近公司使用TFS-CI的方式定期部署测试环境, 但是发现TFS-CI 运行完之后会清理agent所在的测试环境. 运行的进程都会被killed 1. 第一种方法: 本来第一反应 是使用systemd ...
- 2024年最新的Python操控微信教程
自从微信禁止网页版登陆之后,itchat 库实现的功能也就都不能用了,那现在 Python 还能操作微信吗?答案是:可以! 在Github上有一个项目叫<WeChatPYAPI>可以使用 ...
- MyBatis 源码系列:MyBatis 体系结构、六大解析器
体系结构 MyBatis是一个持久层框架,其体系结构分为三层:基础支持层.核心处理层和接口层. 基础支持层包括数据源模块.事务管理模块.缓存模块.Binding模块.反射模块.类型转换模块.日志模块. ...