1.激活函数

激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题。因为很多问题都不是线性的,你只有给它加入一些非线性因素,就能够让问题更好的解决。

函数1:RELU()

优点:

  • 1.相比起Sigmoid和tanh,在SGD中能够快速收敛。
  • 2.有效缓解了梯度弥散的问题。

    a=torch.linspace(-1,1,10)
print(a)
# relu()小于0的都归为0,大于0的成线性
print(torch.relu(a))

输出结果

tensor([-1.0000, -0.7778, -0.5556, -0.333
3, -0.1111, 0.1111, 0.3333, 0.5556,
0.7778, 1.0000])
tensor([0.0000, 0.0000, 0.0000, 0.0000, 0
.0000, 0.1111, 0.3333, 0.5556, 0.7778,
1.0000])

函数2:Sigmoid()

优点:

  • 1.Sigmoid函数的输出映射在之间,单调连续,输出范围有限,优化稳定,可以用作输出层。
  • 2.求导比较容易。

缺点:

  • 1.在两个极端,容易出现梯度弥散。
  • 2.其输出并不是以0为中心的。

    a=torch.linspace(-100,100,10)
print(a)
# relu()小于0的都归为0,大于0的成线性
print(torch.sigmoid(a))

输出结果

tensor([-100.0000,  -77.7778,  -55.5556,
-33.3333, -11.1111, 11.1111,
33.3333, 55.5556, 77.7778,
100.0000])
tensor([0.0000e+00, 1.6655e-34, 7.4564e-2
5, 3.3382e-15, 1.4945e-05, 9.9999e-01,
1.0000e+00, 1.0000e+00, 1.0000e+0
0, 1.0000e+00])

函数3:Tanh()

优点:

  • 1.比Sigmoid函数收敛速度更快。
  • 2.相比Sigmoid函数,其输出以0为中心。

缺点:

  • 仍然存在由于饱和性产生的梯度弥散。

    a=torch.linspace(-10,10,10)
print(a)
# relu()小于0的都归为0,大于0的成线性
print(torch.tanh(a))

输出结果

tensor([-10.0000,  -7.7778,  -5.5556,  -3
.3333, -1.1111, 1.1111, 3.3333,
5.5556, 7.7778, 10.0000])
tensor([-1.0000, -1.0000, -1.0000, -0.997
5, -0.8045, 0.8045, 0.9975, 1.0000,
1.0000, 1.0000])

函数4:Softmax()

softmax通俗理解的大体意思就是,Z1,Z2,,,Zn中,所有的值,先进行一个e^Zi变换,得到yi,然后在除以所有yi的累加和,得到每个值在整个数组中的比重。经过一次sofymax()函数之后,会放大值与值之间的比例,例如图中的Z1,Z2,经过softmax函数之前,是3:1,经过之后,就变成了0.88:0.12。

作用:将张量的每个元素缩放到(0,1)区间且和为1

下图详细讲解了softmax是怎么计算的,图源于网络。

图中例子代码实现如下:

import torch
import torch.nn.functional as F if __name__ == '__main__':
data=torch.tensor([3.0,1.0,-3.0])
print(data)
y=F.softmax(data,dim=0)
print(y)

输出结果

tensor([ 3.,  1., -3.])
tensor([0.8789, 0.1189, 0.0022])

2维tensor进行softmax例子代码实现如下:

import torch
import torch.nn.functional as F if __name__ == '__main__':
data=torch.rand(2,3)
print(data) y=F.softmax(data,dim=1)
# dim=0,就是在1维上进行softmax,也就是在列上进行
# dim=1,就是在2维上进行softmax,也就是在行上进行
print(y)

输出结果

tensor([[0.1899, 0.3969, 0.8333],
[0.9149, 0.8438, 0.4973]])
tensor([[0.2420, 0.2976, 0.4604],
[0.3861, 0.3596, 0.2543]])

Pytorch-tensor的激活函数的更多相关文章

  1. Pytorch Tensor 常用操作

    https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor, ...

  2. Pytorch Tensor, Variable, 自动求导

    2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...

  3. pytorch tensor与numpy转换

    从官网拷贝过来的,就是做个学习记录.版本 0.4 tensor to numpy a = torch.ones(5) print(a) 输出 tensor([1., 1., 1., 1., 1.]) ...

  4. pytorch 3 activation 激活函数

    2.3 Activation Function import torch import torch.nn.functional as F from torch.autograd import Vari ...

  5. pytorch tensor 维度理解.md

    torch.randn torch.randn(*sizes, out=None) → Tensor(张量) 返回一个张量,包含了从标准正态分布(均值为0,方差为 1)中抽取一组随机数,形状由可变参数 ...

  6. pytorch tensor的索引与切片

    切片方式与numpy是类似. * a[:2, :1, :, :], * 可以用-1索引. * ::2,表示所有数据,间隔为2,即 start:end:step. *  a.index_select(1 ...

  7. Pytorch Tensor 维度的扩充和压缩

    维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置 ...

  8. 【Code】numpy、pytorch实现全连接神经网络

    """ 利用numpy实现一个两层的全连接网络 网络结构是:input ->(w1) fc_h -> relu ->(w2) output 数据是随机出 ...

  9. Pytorch(一)

    一.Pytorch介绍 Pytorch 是Torch在Python上的衍生物 和Tensorflow相比: Pytorch建立的神经网络是动态的,而Tensorflow建立的神经网络是静态的 Tens ...

  10. [炼丹术]使用Pytorch搭建模型的步骤及教程

    使用Pytorch搭建模型的步骤及教程 我们知道,模型有一个特定的生命周期,了解这个为数据集建模和理解 PyTorch API 提供了指导方向.我们可以根据生命周期的每一个步骤进行设计和优化,同时更加 ...

随机推荐

  1. Codeforces Round 799 (Div. 4)G. 2^Sort

    暴力枚举每一个端点然后去check 显然是复杂度为\(O(n^2)\)是来不及的. 我们考虑大区间满足小区间一定满足,用两个指针维护一下当前满足不等式的区间,然后长度达到就计算答案. 思路很简单,主要 ...

  2. MarkDown --- 数学公式语法集

    介绍 Markdown 是一种轻量级标记语言,它允许你使用易于阅读.易于编写的纯文本格式来创建富文本内容.通过简单的标记符号,如井号(#).星号(*)和下划线(_),可以快速地添加标题.粗体.斜体.链 ...

  3. aardio 背景透明的3种方式(透明窗体1 webview2,透明窗体2-win-region-bitmap,透明窗体3-winform-transparent-color)

    aardio 背景透明的3种方式(透明窗体1 webview2,透明窗体2-win-region-bitmap,透明窗体3-winform-transparent-color) 3种透明窗体,主要分成 ...

  4. 【开源库推荐】#5 Android高亮引导库

    原文:[开源库推荐]#5 Android高亮引导库 - Stars-One的杂货小窝 本文介绍2个高亮引导库HighLightPro和Curtain hyy920109/HighLightPro: A ...

  5. 没有有线网卡的笔记本如何在PVE下All in one?—NAS + Linux +win下载机

    没有有线网卡的笔记本在PVE下All in one | NAS + Linux + Win下载机 (保姆级未完成版) 目录: 1.前言 2.PVE的安装 3.PVE联网前的准备工作 4.PVE使用无线 ...

  6. 小米Linux 运维工程师面试真题

    小米Linux 运维工程师面试真题 首先我们来看下小米 Linux 运维工程师招聘岗位要求: [岗位定义]运维工程师 [岗位薪资]10K-24K [基本要求]北京 / 经验 3-5 年 / 本科及以上 ...

  7. Lambda Web Browser使用教程

    Lambda web browser是一个功能强大的UE内置浏览器插件, 允许用户在编辑器模式和运行时启动一个浏览器窗口, 对于一些采用传统BS架构的项目而言, 控制页面都放在前段, 若想要将控制页面 ...

  8. 记录--通过Promise实现分批处理接口请求

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 如何通过 Promise 实现百条接口请求? 实际项目中遇到需要批量发起上百条接口请求怎么办? 最新案例代码在此!点击看看 前言 不知你项 ...

  9. 记录--uni-app App端半屏连续扫码

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 本文用一个简单的 demo 讲解 App端 半屏连续扫码 的实现方式,包括(条形码.二维码等各种各样的码). 我会从实现思路讲起,如果你比 ...

  10. 《.NET内存管理宝典 》(Pro .NET Memory Management) 阅读指南 - 第10章

    本章勘误: 暂无,等待细心的你告诉我哦. 本章注解: 暂无 本章释疑: 暂无,等待你的提问 致谢: MVP 林德熙 MVP 吕毅 sPhinX 相关链接 试读记录