题目: CF1916E Happy Life in University

链接: 洛谷 或者 CF

前置知识点: 线段树与HH的项链

先简单回顾下HH的项链这题怎么做的吧。先去掉莫队算法,因为这个不是最优的解法。来说说利用树状数组或者线段树怎么处理查询 \([l,r]\) 上的不同数的数目值。首先值域\(1 \sim n\),那么哈希表就不需要了,可以开数组维护一些和权值有关的信息。



先来看一张图。对于 \(x\) 而言,假如上述标的第一个 \(x\) 为它在进入 \(L\) 前最后出现的位置,而第二个 \(x\) 为在进入待查询区间 \([L,R]\) 的第一个 \(x\)。那么很显然的是,第一个 \(x\) 并不会对这个 \([L,R]\) 造成 \(1\) 的贡献。其次再来考虑在 \([L,R]\) 中如果重复出现了 \(x\) 该如何去掉重复的贡献。很显然的一种思想是在这个查询区间 \([L,R]\) 上,后出现的 \(x\) 会代替掉前出现的 \(x\) 的贡献 \(1\)。那么很自然的一种思想就是“离线”。把查询离线下来,从 \(1 \sim n\) 跑扫描线更新查询。在更新时我们可以维护“每个值出现的最后一次的位置”。这样一来在更新 \(last\) 的时候可以清楚地去掉“前面的贡献”而增加进“当前的贡献”。

算法核心思路:

用一个 \(last\) 数组记录下每个值出现的最后一次位置。并把查询离线下来从 \(1 \sim n\) 进行更新。对于每个 \([l,r]\) 而言,我们在更新时显而易见的可以拿到 \([1,r]\) 的贡献情况,进行区间查询 \([l,r]\) 就行了。具体的每一个 \(last[val[curr]]\) 更新时去掉它原有的贡献,用新的一个位置 \(last\) 的贡献代替它的贡献就行了。

HH的项链关于上述经典算法的参考代码

点击查看代码
#include <bits/stdc++.h>

//#pragma GCC optimize("Ofast,unroll-loops")

#define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope> #endif using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}; template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
} template <typename T>
T lowBit(T x)
{
return x & -x;
} template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
} template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
} template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
} template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
} template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
} template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
} template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
} template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three; bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
} T3() { one = tow = three = 0; } T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
}; template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
} template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
} constexpr int N = 1e6 + 10;
int bit[N];
int n; inline void add(int x, const int v)
{
for (; x <= n; x += lowBit(x))bit[x] += v;
} inline int query(int x)
{
int ans = 0;
for (; x; x -= lowBit(x))ans += bit[x];
return ans;
} int val[N], last[N];
vector<pii> qu[N];
int ans[N]; inline void solve()
{
cin >> n;
forn(i, 1, n)cin >> val[i];
int q;
cin >> q;
forn(i, 1, q)
{
int l, r;
cin >> l >> r;
qu[r].emplace_back(l, i);
}
forn(r, 1, n)
{
if (int preLast = last[val[r]])add(preLast, -1);
add(last[val[r]] = r, 1);
for (const auto [l,id] : qu[r])ans[id] = query(r) - query(l - 1);
}
forn(i, 1, q)cout << ans[i] << endl;
} signed int main()
{
Spider
//------------------------------------------------------
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
}

序列上的这种更新与查询当然树状数组和线段树都行啦。

正文

本文约定俗称:我们将一条路径上不同数的数目叫做“HH的项链”。

其实CF这题就是一个典型的树上HH项链问题,需要稍微转化下。

首先一个显而易见的贪心就是,对于一个 \(LCA\) 它的两个 \(dff\) 值的 \(u \text{与} v\) 的选取,应该取叶子节点。因为很显而易见的是,HH的项链与长度的关系是单调不降的。长度越长才越有可能越大。而题目给的 \(dff\) 函数不就是HH的项链吗?

树上问题怎么变序列问题?dfs序,树剖,很多很多。这里选择dfs序,并且涉及到了区间修改,我们这题采用线段树书写。考虑一下,处理dfs序以后,根据上述贪心和HH项链的基本离线思路,我们应该从叶子节点开始往上算到每个节点的HH项链值,然后嘛就很简单了。只需要记录更新到 \(LCA\) 的最大值,因为HH的项链是单调不降的,所以一定有以下结论:

\[ diff(LCA,son_i) \ge diff(LCA_{son},son_i) \text{,$son_i$为任意一个子孙节点}
\]

即 \(LCA\) 所在子树的其他点到同一个叶子节点的HH的项链并不会优于从 \(LCA\) 到叶子节点的HH的项链。

那么次大值只有可能在更新最大值之前取到。所以只需要在更新当前 \(LCA\) 全局最大值时将当前用于即将更新最大值的数进行更新答案,再更新下最大值即可。

最后考虑下上述的删除时机和添加时机如何搬到树上,很简单。这里需要类比几个点。

  1. 对于一个 \(LCA\) 而言,它的贡献范围显然是“以它为根的子树”。这点 dfs序+线段树可以轻松做到+1
  2. 从哪开始更新,或者说像上述一样该从哪开始扫描进入。显然根据上述应该从叶子节点开始往上去更新HH的项链值。
  3. 什么时候是删除时机?很显然的是当子树的 \(last\) 被父树的 \(last\) 更新时,就该去掉了,其实这个可以预处理出来。只需要为每个点维护一个 \(del\) 数组,表示的是当更新到这个节点时需要去掉哪几个子树节点的“贡献”。dfs从上往下,每需要更新一个 \(last\) 我们需要反过来写,父节点当中待删除的 \(del\) 数组加入当前节点。
  4. 注意到对于一个节点而言,它的子树之间互不影响,所以在退出这棵子树的dfs时需要恢复它的 \(last\)
del数组预处理核心逻辑代码
int preLast = last[val[curr]];
if (preLast)del[preLast].push_back(curr); //HH项链扫描线的删除
last[val[curr]] = curr;

至此算法框架完成,细节见代码注释

点击查看代码
#include <bits/stdc++.h>

//#pragma GCC optimize("Ofast,unroll-loops")

//#define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope> #endif using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}; template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
} template <typename T>
T lowBit(T x)
{
return x & -x;
} template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
} template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
} template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
} template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
} template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
} template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
} template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
} template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three; bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
} T3() { one = tow = three = 0; } T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
}; template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
} template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
} constexpr int N = 3e5 + 10; struct Node
{
int add;
int mx;
} node[N << 2]; #define add(x) node[x].add
#define mx(x) node[x].mx inline void push_up(const int curr)
{
mx(curr) = max(mx(ls(curr)),mx(rs(curr)));
} inline void push_down(const int curr)
{
if (add(curr))
{
mx(ls(curr)) += add(curr);
mx(rs(curr)) += add(curr);
add(ls(curr)) += add(curr);
add(rs(curr)) += add(curr);
add(curr) = 0;
}
} int n;
vector<int> child[N]; inline void update(const int curr, const int l, const int r, const int val, const int s = 1, const int e = n)
{
if (l <= s and e <= r)
{
mx(curr) += val;
add(curr) += val;
return;
}
const int mid = (s + e) >> 1;
push_down(curr);
if (l <= mid)update(ls(curr), l, r, val, s, mid);
if (r > mid)update(rs(curr), l, r, val, mid + 1, e);
push_up(curr);
} inline int query(const int curr, const int l, const int r, const int s = 1, const int e = n)
{
if (l <= s and e <= r)return mx(curr);
const int mid = (s + e) >> 1;
push_down(curr);
int ans = 0;
if (l <= mid)uMax(ans, query(ls(curr), l, r, s, mid));
if (r > mid)uMax(ans, query(rs(curr), l, r, mid + 1, e));
return ans;
} int s[N], e[N], val[N], cnt;
int last[N]; //每种元素最后出现的点
vector<int> del[N];
//处理dfs序,预处理del数组
inline void dfs(const int curr, const int fa)
{
s[curr] = ++cnt;
int preLast = last[val[curr]];
if (preLast)del[preLast].push_back(curr); //HH项链扫描线的删除,父树去掉子树贡献
last[val[curr]] = curr; //进入子树更新last
for (const int nxt : child[curr])if (nxt != fa)dfs(nxt, curr);
last[val[curr]] = preLast; //退出子树时恢复last
e[curr] = cnt;
} ll ans; inline void getAns(const int curr, const int fa)
{
//把curr当做LCA
for (const int nxt : child[curr])if (nxt != fa)getAns(nxt, curr); //贪心从底部开始往上算HH的项链
update(1, s[curr], e[curr], 1); //扫描线扫到当前节点加入这个点的贡献,贡献范围为整棵子树
for (auto nxt : del[curr])update(1, s[nxt], e[nxt], -1); //HH的项链的删除,删掉子树贡献
ll mx2 = 1; //次小值
for (const int nxt : child[curr])
{
if (nxt == fa)continue;
ll mx1 = query(1, s[nxt], e[nxt]); //最大值
uMax(ans, mx1 * mx2); //更新max之前计算,mx1则会是次大值
uMax(mx2, mx1); //更新次大值
}
} //多测清空
inline void clear()
{
forn(curr, 1, n<<2)
mx(curr) = add(curr) = 0;
cnt = 0;
forn(i, 1, n)last[i] = 0, del[i].clear(), child[i].clear();
ans = 1;
} inline void solve()
{
cin >> n;
forn(i, 2, n)
{
int x;
cin >> x;
child[x].push_back(i);
}
forn(i, 1, n)cin >> val[i];
dfs(1, 0);
getAns(1, 0);
cout << ans << endl;
clear();
} signed int main()
{
Spider
//------------------------------------------------------
int test = 1;
// read(test);
cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
}

CF1916E Happy Life in University 题解的更多相关文章

  1. 2016-2017 National Taiwan University World Final Team Selection Contest (Codeforces Gym) 部分题解

      D 考虑每个点被删除时其他点对它的贡献,然后发现要求出距离为1~k的点对有多少个. 树分治+FFT.分治时把所有点放一起做一遍FFT,然后减去把每棵子树单独做FFT求出来的值. 复杂度$nlog^ ...

  2. poj 2010 Moo University - Financial Aid(优先队列(最小堆)+ 贪心 + 枚举)

    Description Bessie noted that although humans have many universities they can attend, cows have none ...

  3. 算法(第四版)C# 习题题解——2.3

    写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 查找更为方便的版本见:http ...

  4. zoj 4020 The 18th Zhejiang University Programming Contest Sponsored by TuSimple - G Traffic Light(广搜)

    题目链接:The 18th Zhejiang University Programming Contest Sponsored by TuSimple - G Traffic Light 题解: 题意 ...

  5. HDU 4352 XHXJ's LIS HDU 题解

    题目 #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the ent ...

  6. POJ2482 Stars in Your Window 题解

    Fleeting time does not blur my memory of you. Can it really be 4 years since I first saw you? I stil ...

  7. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  8. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  9. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  10. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

随机推荐

  1. redis命令Incr做计数器 + 切点切面

    Redis Incr 命令将 key 中储存的数字值增一. 如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作. package com.example.apid ...

  2. vue+iviews 动态表格(table组件)

    iviews官网上关于table的使用方法是固定表头的使用方法,如何生成动态的table网上找了好多也没有特别合适的,综合几位博主的文章经过尝试终于实现了,分享出来供大家参考 一.先看官网上的样例 官 ...

  3. P4913【黄】

    这题好像可以用线段树什么的高级做法来做,但我感觉我这个简单做法不管是时间还是空间都和那些复杂的做法差不了太多.重点是很优雅,思路非常简单,而且代码很短,用OOP思想写成的代码可读性极高,不用注释估计都 ...

  4. Go 标准库 net

    本篇文章主要介绍 Go 标准库中的 net 包,通过一个小例子介绍常用的 net 包函数/方法 Listen,Accept 和 Dial 等. 1. net 简介 Go 官网对 net 包的定义如下: ...

  5. python 基础 | 虚拟环境搭建全流程

    首先,建立 python 虚拟环境 test_env: python3 -m venv test_env # 激活虚拟环境 source ./test_env/bin/activate # linux ...

  6. SpringBoot利用自定义注解实现多数据源

    自定义多数据源 SpringBoot利用自定义注解实现多数据源,前置知识:注解.Aop.SpringBoot整合Mybaits 1.搭建工程 创建一个SpringBoot工程,并引入依赖 <de ...

  7. unix domain 与本地本地回环在进程间通信中的差异

    前言: 127.0.0.1它是一个私有IP,代表的就是你的本机环回地址,其实本质上是绑定在虚拟网卡loopback上的IP. 在实际应用中,有遇到在使用本地回环做进程间通讯的时候程序阻塞的情况.比如下 ...

  8. 【转帖】纳尼,mysqldump导出的数据居然少了40万?

    0.导读 用mysqldump备份数据时,加上 -w 条件选项过滤部分数据,发现导出结果比实际少了40万,什么情况? 本文约1500字,阅读时间约5分钟. 1.问题 我的朋友小文前几天遇到一个怪事,他 ...

  9. [转帖]Unixbench的使用(综合性能测试、2D测试)和问题解决(跑不出多线程分数,调不出窗口,报错等)

    一.Unixbench简介 Unixbench一个基于系统的基准测试工具,不单纯是CPU 内存 或者磁盘测试工具.测试结果不仅仅取决于硬件,也取决于系统.开发库.甚至是编译器.Unixbench是一个 ...

  10. Nginx拆分配置文件的办法

    Nginx拆分配置文件的办法 摘要 最近公司使用Nginx进行微服务的路由处理 但是发现随着业务发展, 配置文件越来越复杂. 修改起来也很容易出现错误. 基于此. 想通过拆分配置文件的方式来提高修改效 ...